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Evolution of long centromeres in fire ants

BMC Evolutionary Biology

@ CrossMark

Yu-Ching Huang', Chih-Chi Lee', Chia-Yi Kao', Ni-Chen Chang'? Chung-Chi Lin®, DeWayne Shoemaker*”

and John Wang'"

Abstract

Background: Centromeres are essential for accurate chromosome segregation, yet sequence conservation is low
even among closely related species. Centromere drive predicts rapid turnover because some centromeric
sequences may compete better than others during female meiosis. In addition to sequence composition, longer

centromeres may have a transmission advantage.

Results: We report the first observations of extremely long centromeres, covering on average 34 % of the
chromosomes, in the red imported fire ant Solenopsis invicta. By comparison, cytological examination of Solenopsis
geminata revealed typical small centromeric constrictions. Bioinformatics and molecular analyses identified CenSol,
the major centromeric satellite DNA repeat. We found that CenSol sequences are very similar between the two
species but the CenSol copy number in S. invicta is much greater than that in S. geminata. In addition, centromere
expansion in S. invicta is not correlated with the duplication of CenH3. Comparative analyses revealed that several
closely related fire ant species also possess long centromeres.

Conclusions: Our results are consistent with a model of simple runaway centromere expansion due to centromere
drive. We suggest expanded centromeres may be more prevalent in hymenopteran insects, which use haplodiploid

sex determination, than previously considered.
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Background

Centromeres serve as the fundamental chromosome
structure responsible for accurate chromosome segrega-
tion during eukaryotic cell division. Most eukaryotic
chromosomes are monocentric, having microtubule
attachment domains restricted to a small constriction
zone. In contrast, holocentric chromosomes have micro-
tubule binding domains along the entire length of the
chromosome and have independently evolved many
times [1-3].

Monocentric and holocentric chromosomes have
been extensively studied, but less attention has been
given to centromeres with intermediate structures.
Centromeres with longer constrictions occur after
Robertsonian fusions [4] as well as in atypical situa-
tions such as in hybrids and cancer cell lines [5, 6].
There are also cases where centromeres appear to
have undergone extreme expansion. For example,
chromosomes with longer “compound centromeres”

* Correspondence: johnwang@gate sinica.edu.tw
'Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
Full list of author information is available at the end of the article

( BioMed Central

have been reported in a few mammalian species,
including the muntjac [7] and mouse [8]. Similarly
extremely large primary constrictions, or “metapoly-
centric” centromeres, have been observed in legume
plants [9, 10].

The evolution of such large centromeres may repre-
sent cases of “centromere drive” [11, 12]. Female mei-
osis in plants and animals is asymmetric with only
one of the four meiotic products entering the egg.
Under the centromere drive model, centromeric al-
leles on chromosomes, especially longer alleles,
attach more strongly or efficiently to spindle micro-
tubules at the kinetochore compared with other al-
leles and thereby gain a transmission advantage into
the egg. This model also may explain the observed
rapid evolution of centromeric DNA sequences
among lineages, which are generally highly repetitive
satellites, because such sequences that bind stronger
to the spindle would be similarly preferentially
transmitted.

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12862-016-0760-7&domain=pdf
mailto:johnwang@gate.sinica.edu.tw
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Huang et al. BMC Evolutionary Biology (2016) 16:189

Success of chromosomes as a result of centromere
drive in female meiosis simultaneously can have a
negative influence on male meiosis. In contrast to female
meiosis, all four meiotic products become gametes in
males. Unequal binding at the kinetochore during
chromosome segregation may trigger cell cycle check-
points that are deleterious, such as reduced fertility or
aneuploidy [13-15]. As a consequence of these deleteri-
ous effects, there should be selection for compensatory
mutations (suppressors) that restore meiotic parity [12].
Consistent with this idea, kinetochore proteins, includ-
ing the CenH3 protein, which is the histone H3 variant
that binds and defines centromeres, also evolve rapidly,
presumably to compensate for or suppress chromosome
segregation defects [11, 12]. In addition to faster
sequence evolution, duplication of CenH3 has occurred
in some legume species, but only in those with ex-
panded centromeres [9]. Once suppression has evolved,
continued competition for the oocyte during female
meiosis may select for different but “stronger” primary
centromeric sequences, leading to repeated cycles of ex-
pansions and collapses [12, 16]. Additionally, deleteri-
ous mutations that become linked to driving
centromeres likely counterbalance unlimited expansion
[14, 16, 17].

The recent discovery of metapolycentric chromo-
somes reveals that there is likely a continuum in
centromere structures between monocentric and holo-
centric chromosomes [9, 10]. We first noticed unusual
chromosome structures in the red imported fire ant
Solenopsis invicta in a FISH experiment [18] and de-
cided to explore further. In this article, we report the
first observations of extremely long centromeres in S.
invicta. We conducted cytological, bioinformatics, mo-
lecular, and comparative analyses to identify and
characterize CenSol, the major centromeric satellite
DNA repeat in fire ants. Our results are consistent with
a model of simple runaway centromere expansion due
to centromere drive for the evolution of long centro-
meres in fire ants.

Results

Centromeres are larger in S. invicta than S. geminata

We used DAPI to stain metaphase chromosomes and
found that, in contrast to typical monocentric chromo-
somes with a narrow constriction at the centromere, every
S. invicta chromosome exhibited long primary constric-
tions (Fig. 1). Primary constrictions spanned an average of
34 % of the chromosome length (constrictions among
chromosomes range from 17.3 £ 1.3 to 54.8+6.1 %). We
used a quantification method [9] that adjusts for the lower
DNA intensity and narrowness at the constricted region
to estimate the proportion of the chromosome repre-
sented by the centromere. With the qualification that
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condensation patterns may be affected by the specific
chromosomal preparation method used, we estimated that
the primary constrictions accounted for ~3.6 Mb of
individual chromosomes (1.8 + 0.5 to 6.3 + 1.3 Mb), and in
total covered ~58 Mb (12 %) of the predicted haploid
genome size of 484 Mb [19].

We examined centromere structure in the closely related
tropical fire ant S. geminata to test whether this extended
primary constriction was specific to S. invicta. Surprisingly,
15 of the 16 S. geminata chromosomes showed the typical
monocentric morphology with small primary constrictions;
a single exception exhibited an elongated constriction
(Fig. 1). The primary constrictions on the 15 typical
chromosomes spanned an average of only 11 % of the indi-
vidual chromosome length (6.5+1.3 % to 16.0+1.8 %),
which was about three-fold less than that of S. invicta. The
centromere on the exceptional chromosome spanned
23.8 % (+ 5.9 %). The centromere morphology found on all
S. invicta chromosomes and a single chromosome of S.
geminata is similar to that described as ‘compound centro-
meres’ or ‘metapolycentric’ chromosomes [7—10].

Candidate centromeric satellite sequences in fire ants

The most prevalent tandem repeat, or satellite, in a gen-
ome generally is assumed to be the candidate centromeric
repeat [20, 21]. We followed an established bioinformatics
pipeline [20] to identify high copy tandem satellites from
the draft genomes of S. invicta and S. geminata (Additional
files 1 and 2). The top ten satellites and their summary
statistics for both species are shown in Additional file 3:
Table S1. We compared the sequences by BLAST similarity
searches to identify shared satellites within the two top-ten
lists. We found nine repeats were shared between the ant
genomes, with only the top two having identical ranks
(Additional file 3: Table S1).

Centromeres are composed of only one dominant
repeat in many species, but some species do have more
than one type of repeat [22, 23]. Thus, we focused on
the top two satellites for both S. invicta and S. geminata.
The top satellite for both fire ants was a similar 109 bp
repeat. These monomers had minor sequence and length
variation, which is typical of centromeric satellites in
other species [24—26]. The average GC content was 39.4
and 385 % in S. invicta and S. geminata, respectively,
which is compatible with observations suggesting a
slight preference for AT-rich centromeric satellites in
animals [20]. This repeat showed no significant similar-
ity to any dominant tandem repeat from 282 species,
including the candidate centromeric repeats in four ants
[20], and also no similarity to known transposons or sat-
ellite sequences (BLASTN against NCBI nr best hit: bit
score = 41.0, E-value = 3.9; Repbase databases: no hits).

The second most abundant satellite was 139 bp in S.
invicta and 138 bp in S. geminata. Although the modal
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Fig. 1 Contrasting centromere morphologies in S. invicta and S. geminata. The centromere structure was revealed by DAPI staining of metaphase
chromosomes. The elongated (dimension lines) and the small (arrowheads) primary constrictions are indicated. Scale bars, 5 um

S. geminata

lengths differed by 1 bp, the repeats in both clusters had
an average identity of 89.7 %. Similarly, the counts of the
second ranked satellites had a dramatic drop (~13-fold
in S. invicta, ~4-fold in S. geminata) compared with that
of the top repeat for both genomes. We next examined
the chromosomal localization of these satellites using
fluorescence in situ hybridization (FISH) analysis to
determine if they were centromeric.

Chromosomal localization of the satellites in S. invicta
and S. geminata

We performed FISH experiments on metaphase chromo-
somes to determine the localization of the predominant
109 bp satellite. Using a labeled monomer as the probe we
found that the hybridization signals (in green) localized to
all chromosomes in both males (Fig. 2a) and females (Add-
itional file 4: Figure S2A) (ant males are haploid, 1n = 16; fe-
males are diploid, 2n=32). Hybridization signals were
restricted to one large region per chromosome rather than
scattered over each chromosome suggesting a largely un-
interrupted organization in the genome. Hybridization sig-
nals on average occupied 31.0 % (18.0 + 4.8 to 44.0 + 4.8 %)
of the chromosome length in S. invicta. BAC-FISH
revealed a pattern qualitatively indistinguishable from the
FISH analysis using one monomer (Additional file 4: Figure
S2B). Importantly, the hybridization location coincided with
the centromeric constrictions (Fig. 3a), and hereafter we
refer to this satellite as CenSol.

The CenSol hybridization signals were more restricted on
all S. geminata chromosomes compared to S. invicta
(Figs. 2a, 3a, and Additional file 4: Figure S2A) and only
occupied an average of 9.8 % (3.5+0.6 to 16.8+4.9 %) of
the chromosome length. For 15 of 16 chromosomes, the
CenSol signal coincided with the centromeric constrictions.
Interestingly, CenSol was localized only at the edge of the
constriction for the one S. geminata chromosome with an
extended centromeric constriction (Figs. 2a, 3a, one pair for

females in Additional file 4: Figure S2A; marked by dimen-
sion lines). The centromeric hybridization patterns of Cen-
Sol were confirmed in all cells examined (S. invicta, N = 47
cells, two haploid and two diploid individuals; S. geminata,
N =45 cells, one haploid and one diploid individual).

In contrast to the centromeric localization of the CenSol
satellite, the second most abundant satellite, hereafter
called Solmin, was patchily distributed only on 14 and
nine of the S. invicta and S. geminata chromosomes,
respectively (Fig. 2a). The fluorescence signals of this
repeat did not overlap with those of CenSol or the primary
constrictions, excluding it as a centromeric or pericentric
repeat. Together, these data show that the CenSol satellite
is part, or probably all, of the centromeric satellite in S.
invicta and all but one chromosome in S. geminata.

Centromeric positions can be used to describe the types
of fire ant chromosomes. The centromeres of S. invicta
previously were reported to be predominantly metacentric
[27], whereas the chromosomes of S. geminata were
metacentric and acrocentric [28]. Based on the CenSol
signals in our FISH analysis and the cytological metaphase
staining, we re-categorized S. invicta chromosomes into
four metacentric, four submetacentric, seven subtelocentric,
and one telocentric (or acrocentric) chromosomes (Fig. 3b).
Chromosome classification was consistent between the
CenSol FISH localization and our own karyotyping
methods (Fig. 3c and d). On the other hand, we found six
metacentric, nine submetacentric, and one subtelocentric
chromosomes in S. geminata (Fig. 3b). Differences between
the previous studies [27, 28] and ours likely can be
explained by our inclusion of high-resolution FISH analysis
and better chromosome resolution.

Sequence conservation of CenSol in S. invicta and S.
geminata

We compared CenSol sequences of both fire ants
obtained from intact genomic arrays, which preserve the
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Fig. 2 a Localization of the first and the second most abundant satellites on the metaphase chromosomes of S. invicta and S. geminata. FISH
analysis on haploid cells combining the CenSol probe (green) with the second most abundant satellite (Solmin, blue); chromosomes
counterstained with DAPI (gray). b Summary of the length distributions of the CenSol repeat in the S. invicta and S. geminata draft genomes.

>

was the dominant repeat length for both ants. ¢ Sequence logos generated with 10,469 and 5423 unique 109 bp CenSol sequences from S.
invicta and S. geminata, respectively. The height of each letter is proportional to the frequency of four nucleotides, adenine (A), thymine (T),
guanine (G), and cytosine (C). The total height of each stack, measured in bits, is related to the binding energy [57]. ECORV and BsaAl restriction
sites are indicated with arrowheads. The BsaAl in parenthesis indicates a less common polymorphic cutting site in the CenSol monomers. The
locations of the AlrepV1 primers are shown

BLASTN hits of the consensus CenSol sequence against the S. invicta and S. geminata genomes were binned by sequence length. The 109 bp unit

native structure, rather than the sequences from whole-
genome assemblies, which may be assembled inappro-
priately due to their repetitive nature. Previous screening
of a S. invicta BAC library by end sequencing revealed

that 12 reads from six BAC clones (see methods) were
composed of tandem repeats formed by the same
monomer. Analysis using Tandem Repeat Finder [29]
confirmed that the satellite DNA was composed of
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Fig. 3 CenSol satellite fully localizes to the primary constriction of the haploid chromosomes in S. invicta and S. geminata. a and b FISH analysis
with the CenSol probe (green); chromosomes counterstained with DAPI (gray). a The elongated (dimension lines) and the small (arrowheads)
primary constrictions of chromosomes in S. invicta (upper panels) and S. geminata (lower panels) are indicated. b Positions of centromeres and
CenSol coverage on chromosomes. Centromeric positions were categorized based on CenSol signal locations in FISH analysis. Chromosomes from
S. invicta (left panel) and S. geminata (right panel) in (a) are artificially aligned and sorted according to the centromeric positions. The CenSol
coverage rates (%) on each chromosome are labeled. ¢ DAPI staining of the S. invicta chromosomes from a cell transitioning from metaphase to
anaphase. Fifteen chromosome pairs are together while one pair has separated (arrowheads). d Aceto-orcein staining of metaphase chromosomes
from male testes imaginal discs. Chromosome number is 32 likely because chromosomes come from two adjacent cells, although we cannot exclude
potential diploidization which occurs in some cells of haploid male ants [58]. Scale bars, 5 um

multiple 109 bp units, which corresponded to CenSol that 66.5 % (638 of 960 clones) were positive for this

found using the bioinformatics approach. Additional
screening of the S. invicta BAC genome library by PCR
to survey CenSol abundance in the ant genome revealed

satellite. This percentage was higher than the genome
coverage estimated from FISH (above), possibly indicat-
ing that the BAC library is biased for centromeric DNA,
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that short stretches of CenSol are scattered throughout
the S. invicta genome, or both.

We next used the S. invicta AlrepV1 primer pair to
clone CenSol elements from the S. geminata genome.
Electrophoresis of PCR products revealed a ladder-like
pattern, consistent with CenSol being arranged tandemly
in the S. geminata genome (Fig. 5b). The consensus
sequence for each fire ant was generated using 45 units
from the S. invicta BAC clones (above) and 52 units
from the S. geminata clones. Sequence analysis showed
that most of the repeats from both species carried the
recognition site for the restriction enzymes EcoRV
(GATATC) and BsaAl ((C/T)ACGT(A/G)) with a modal
length of 109 bp (range: 108 bp to 122 bp; Additional file
4: Figure S1A-C).

We performed a multiple sequence alignment using
the same sets of cloned sequences from S. invicta and S.
geminata. We used the maximum likelihood method
implemented in MEGA (1000 bootstrap replicates) to
construct a gene tree for these CenSol sequences. These
analyses revealed that the gene sequences from each
species did not cluster into species-specific groups
(Additional file 4: Figure S1D). This result indicates only
minor divergence between the two CenSol sequence sets
of the two ant species.

We used BLASTN to query the consensus sequence
against the S. invicta [19] and S. geminata draft genomes
and found 46,990 and 13,221 matches in the respective
genomes, with some polymorphism in both length and
sequence, in total covering ~4.1 and ~1.2 Mb. These
values likely considerably underestimate the total CenSol
coverage because repeats generally are collapsed in
genome assemblies derived from short sequencing reads.
The modal length of the CenSol BLASTN matches was
109 bp for both ant species (Fig. 2b). Similar to the
cloned products above, nucleotide substitutions, inser-
tions, and deletions were present among different mono-
mers with some creating polymorphisms in the presence
of restriction endonuclease recognition sites (e.g., ECORV
and BsaAl). This length variation also explains CenSol
multimerization and the additional ‘off’ ladder steps in
the restriction digestions (below, Fig. 4a).

Considering only the 109 bp monomers, there were
13,013 and 5720 copies (10,469 and 5423 unique) in the
S. invicta and S. geminata genomes, respectively
(Additional files 5 and 6). Pairwise comparisons of these
unique 109 bp monomers using BLASTN [30] revealed
that the nucleotide identity between species ranged from
70.6 to 99.1 % (intra-species comparison: 70.6 to 99.1 %
in S. invicta; 71.6 to 99.1 % in S. geminata). We used
WebLogo to summarize the aligned sequences and
found that the nucleotides at each position were gener-
ally identical between S. invicta and S. geminata, with a
few sites having a different predominant nucleotide

Page 6 of 14

(Fig. 2c). However, the two species did not share any
identical CenSol sequences. The most similar pair
between the two species differs at one base; position 88
is a thymine (T) in S. invicta and an adenine (A) in S.
geminata. These data indicate that the CenSol repeat
sequences are polymorphic but also highly similar
between these species. Taken together, the conserved
109 bp CenSol repetitive sequence is the basic satellite
DNA unit in both S. invicta and S. geminata genomes.

CenSol copy number variation in S. invicta and S.
geminata

We performed genomic restriction fragment analysis
followed by gel electrophoresis to determine if CenSol
repeats are arranged tandemly in both fire ants. The
EcoRV digestion pattern of S. invicta genomic DNA
displayed a ladder-like pattern with ~100 bp intervals
(Fig. 4a, left panel, lane 2). Similarly, the BsaAl digestion
pattern also produced an ~100 bp ladder-like pattern,
with additional bands in between the main ~100 bp frag-
ments (Fig. 4a, left panel, lane 3), which was due to the
presence of infrequent BsaAl recognition sites created
by sequence polymorphisms in the CenSol repeats (Fig. 2c).
In contrast to S. invicta, no apparent restriction fragments
were visible by DNA staining of the S. geminata genomic
DNA digestions even though the same amount of DNA
was used (Fig. 4a, left panel, lanes 4—6).

Southern hybridization using CenSol DNA confirmed
that these restriction fragments were CenSol elements in
S. invicta (Fig. 4a, right panel, lanes 1-3). Notably, this
also revealed a clear ladder pattern in S. geminata
(Fig. 4a). The similar restriction pattern in the CenSol
Southern hybridization experiment between S. invicta
and S. geminata confirmed that this satellite is arranged
tandemly on chromosomes. Also the differences in DNA
staining and hybridization signals indicate that the S.
invicta genome has more CenSol units compared with
the S. geminata genome. Thus, both ant species have the
same or similar CenSol satellite but at different copy
numbers.

We performed a slot blot hybridization experiment to
quantify the difference in the relative amounts of CenSol
repeats between the S. invicta and S. geminata genomes.
A comparison of the CenSol hybridization intensity on
different dilutions of genomic DNA revealed that the
CenSol copy number in the genome of S. invicta was
10-20 fold more than that in S. geminata (Fig. 4b). The
weaker hybridization intensities in S. geminata are not
likely due to divergence of the CenSol sequence because
this probe (although it is an S. invicta CenSol copy) has
a high average similarity to the ensemble of copies for
both species (~87 %). Thus, the slot blot results in
combination with the restricted CenSol hybridization
patterns in the FISH experiment reveal that the CenSol
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Fig. 4 The abundance of the CenSol repeats in fire ant genomes. a Detection of the CenSol repeat by restriction digestion of S. invicta and S.
geminata genomic DNA. Equal amounts of uncut or restriction digested (EcoRV or BsaAl) genomic DNA were separated by agarose gel
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satellite is present but is far less abundant in the S.
geminata genome.

CenH3 copy number in fire ants

Legume species with two copies of the CenH3 gene have
larger centromeres than those with a single copy [9]. We
searched for CenH3 paralogs in the S. invicta and S.
geminata genomes to determine if either has additional
CenH3 gene copies. We found only a single copy of the
CenH3 gene in both genomes, and the gene sequences
of both are most similar to the predicted CenH3 genes
of other insect species (Additional file 4: Figure S3). The
nearest similar sequence was the canonical histone H3,
as predicted. Thus, there is no clear association between
the CenH3 gene copy number and centromere size in
fire ants.

CenSol copy number evolution in other Solenopsis

Centromeric satellites may undergo differential expan-
sion or contraction in closely related species [31]. We
examined five additional species to determine how
CenSol copy number has evolved in this group of ants.
Altogether, we examined: three socially polymorphic fire
ants from South America S. invicta, S. macdonaghi, and
S. richteri (these three species belong to a single clade,
and their colonies are either monogynous with one
queen or polygynous with many queens, and this differ-
ence is genetically regulated [32, 33]); the social parasite
fire ant S. daguerrei; two North American fire ants S.
aurea and S. geminata; and a more distantly related thief
ant S. indagatrix (outgroup). S. geminata forms a mono-
phyletic clade with S. aurea, and this clade is sister to

the group with S. daguerrei, S. invicta, S. macdonaghi,
and S. richteri [33, 34].

We estimated relative CenSol copy number differences
using slot blot hybridization. We detected CenSol
hybridization signals in six of the seven Solenopsis spe-
cies (Fig. 5a). S. invicta, S. macdonaghi, and S. richteri
contained comparable large numbers of CenSol repeats
relative to each other, and 10.9 to 13.1 fold more than
that of S. geminata (Fig. 5a, columns 1-3 and 6). The
CenSol copies of S. daguerrei and S. aurea showed a
moderate increase (4.2 and 3.2 fold) relative to S.
geminata (Fig. 5a, columns 4-6). We did not detect
CenSol in the outgroup species S. indagatrix using the
slot blot assay (Fig. 5a). However, we could amplify the
CenSol satellite by PCR using a high concentration of
template DNA (~10°-10° fold more). This suggests that
a trace amount of CenSol satellite is present in the S.
indagatrix genome (Fig. 5b). The PCR assay also
revealed a ladder-like pattern of CenSol with ~100 bp
interval in all seven species (Fig. 5b), which resembled
the restriction digestion pattern of the S. invicta and S.
geminata genomes (Fig. 4a). These data suggest that the
CenSol repeats are distributed tandemly in all seven
Solenopsis species.

We used FISH to compare the CenSol distribution for
six of the seven species assayed by slot blot hybridization.
We could not include S. richteri because we lacked tissue
samples. Also, we decided to examine interphase cells for
S. macdonaghi, S. daguerrei, S. aurea, and S. indagatrix
because fresh ant samples of these species with dividing
cells were not available. The CenSol signals were widely
distributed on S. invicta, S. macdonaghi, S. daguerrei, and
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seven studied species into four groups based on their relative CenSol levels
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S. aurea chromatin, which parallel the expanded CenSol
copies in their genomes (Fig. 5a). In contrast, S. geminata
exhibited more localized signals of CenSol (Fig. 5¢), which
is consistent with the restricted CenSol signals on meta-
phase chromosomes (Figs. 2a, 3a, and Additional file 4:
Figure S2A) and the weak signals in the hybridization
experiments (Figs. 4 and 5a). Lastly, CenSol signals were
undetectable by FISH for S. indagatrix (Additional file 4:

Figure S4B), which is consistent with the absence of signal
in the slot blot assay and the requirement of high template
amounts for the PCR assay.

The long centromeres in S. invicta, S. macdonaghi,
and S. richteri could be due to expansion from an
originally shorter centromere; alternatively long fire ant
centromeres contracted in the four other fire ant species.
We conducted an ancestral state reconstruction analyses



Huang et al. BMC Evolutionary Biology (2016) 16:189

to infer which condition might have been more likely. Our
analysis using the linear-change parsimony model indicates
that the ancestral centromere state was short or moderate
in length, supporting centromere expansion in the lineage
leading to S. invicta, S. macdonaghi, and S. richteri (Fig. 5d).
However, the direction of centromere evolution for S.
indagatrix, S. aurea, and S. geminata was unresolved. We
obtained a similar ancestral state pattern using squared-
change parsimony (Additional file 4: Figure S5).

Discussion

Centromeres and centromeric satellite DNA in ants
Studies on ant chromosomes were led largely by Imai,
Crozier and their co-workers starting in the mid-20th
century [35]. As FISH was not available at that time, the
vast majority of these cytological studies focused on the
chromosome number and the karyotype [36, 37]. Despite
knowledge of the karyotypes for >750 ant species [37],
detailed examination of the centromere and identifica-
tion of centromeric satellite sequences are lacking.

To the best of our knowledge, this is the first study
combining bioinformatics and cytologicial examination
of candidate centromere sequences in any ant. Previ-
ously, candidate centromeric repeats of four ant species
were identified using computational methods to find the
most dominant satellite in the genome [20]; however, no
cytological evidence was provided to support centro-
meric localization of these satellites. We used a similar
bioinformatics approach to identify the top ten satellites
for two fire ant species, S. invicta and S. geminata. We
then used FISH to demonstrate that the most common
tandem repeat, CenSol, is localized to the centromeres
on all chromosomes in both fire ants, whereas the
second-most abundant satellite does not. Our results
support that the CenSol satellite is a major component
of fire ant centromeres, however definitive evidence will
require CenH3 localization and chromatin immunopre-
cipitation studies (CenH3 antibodies are not yet available
for fire ants).

Unusually long centromeres in S. invicta

We demonstrated that the S. invicta centromeres are
unusually long, spanning ~34 % of each chromosome.
Such long centromeres have been found previously in
only a few cases in plants and animals [4-10]. In
contrast, the S. geminata chromosomes (except one)
have the more typical, narrow centromeres commonly
found in many animals and plants. We did not directly
examine centromere length in S. macdonaghi and S.
richteri, but they likely have long centromeres as well
because both have high CenSol copy numbers and have
CenSol interphase FISH patterns that were qualitatively
similar to S. invicta. Correspondingly, S. daguerrei and
S. aurea, which have ~4-fold greater CenSol copy
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number than S. geminata but less than S. invicta, S.
macdonaghi, and S. richteri, likely have centromere
lengths intermediate to those of S. invicta and S.
geminata. We found very low but detectable levels of
CenSol in the outgroup thief ant, S. indagatrix, suggest-
ing that CenSol is not part of its centromere (ie., is a
minor repeat elsewhere) or is too divergent with only a
few copies remaining conserved enough for detection
(i.e., CenSol-indagatrix is different from CenSol-invicta).

Based on the current hypothesis of the phylogeny of the
study species, our data suggest that there have been at least
two bouts of CenSol expansion in the Solenopsis genus
(Fig. 5d). Ancestral state reconstruction supports one
centromere expansion event occurring in the common
ancestor of four South American fire ants (S. daguerrei, S.
invicta, S. macdonaghi, and S. richteri) [33, 34], and another
later at the base of S. invicta, S. macdonaghi, and S. richteri
(Fig. 5d). Centromere evolution in S. geminata, S. aurea,
and S. indagatrix is unclear. Resolving whether expansion
or contraction occurred in these three species (and
throughout the genus) will require additional karyotypic
studies of multiple Solenopsis species.

A new centromere may be evolving in S. geminata

Our cytological studies showed that one S. geminata
chromosome has an extended centromeric constriction
(Fig. 1). Interestingly, CenSol hybridization was localized
only to the edge of this constriction (Figs. 2a, 3a, and
Additional file 4: Figure S2A), possibly indicating that a
new centromeric satellite has invaded this S. geminata
chromosome and may represent the early stages of a
centromere revolution. Alternatively, it is possible that
CenSol has not yet displaced the original centromeric
satellite on this chromosome. The identity of this satel-
lite remains to be determined, but our data demonstrate
it is not the second most common repeat in the genome
(see Fig. 2a).

How did centromeres become so long in fire ants?
Centromeric satellite sequence turnover is well
established and copy number differences of satellite
repeats can be extreme both between species and among
chromosomes within the same species [38—40]. How-
ever, why are all the centromeres so long in S. invicta
(and in S. macdonaghi and S. richteri)?

One possibility is genetic drift whereby the copy
number of CenSol on each chromosome increases or
decreases by mutation (e.g., replication slippage) or
recombination (e.g., unequal crossover) with copy
number changes in either direction being equally likely
and occurring independently for each chromosome. By
chance all 16 of the S. invicta centromeres may have
drifted to the longer sizes. A second possibility is that
centromere length evolves neutrally but cell biological
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processes constrain all the centromeres to be of similar
size, e.g., perhaps to avoid aneuploidy during cell
division. While this may explain how all centromeres are
uniformly long, it cannot readily explain the initial
transition from the ancestral short to current long
centromeres.

A third explanation, which we favor, is that selection
for longer centromeres has occurred (and possibly is still
ongoing), at least in some fire ants. We suggest centro-
mere drive is likely the selective force underlying evolu-
tion of long centromeres in fire ants. Because only one
of the four meiotic products in females is inherited by
the egg, centromeres that violate the normally ostensibly
fair process of meiosis have a selective advantage. The
large sizes of all the primary constrictions in S. invicta
chromosomes are consistent with a model of inter-
homolog chromosomal competition [12]. Differences in
centromere DNA length between the chromosome homo-
logs may result in an uneven distribution of kinetochore
proteins (e.g., CenH3), such that longer centromeres have
more microtubule binding sites, and thus, preferential
transmission into the oocyte. Because this is a general
mechanism for all chromosomes, centromere drive could
select for longer centromeres on every chromosome [12].
Thus, S. invicta and its relatives may have experienced
runaway expansion of their centromeres.

The long S. invicta centromeres resemble the recently
characterized metapolycentric centromeres in legumes
and the compound centromeres in muntjacs and wallabies
[5, 7-10]. These monocentric chromosomes have clear
multiple centromeric protein docking domains, exhibiting
either dotted or continuous patterns along the entire
length of the constrictions. Metapolycentric chromosomes
in legumes are associated with the maintenance of a dupli-
cated copy of CenH3 gene in the genome [9]. We found
no evidence of additional copies of CenH3, and thus fire
ant centromere expansion occurred through a mechanism
independent of CenH3 duplication.

Could centromere expansions be a common feature of
Hymenoptera?

Studies in the ciliated protozoan Tetrahymena, which only
has female meiosis, has led to the proposal that species
without male meiosis have unsuppressed (or at least
relaxed selection on suppressors for) centromere drive,
thereby facilitating greater centromere complexity and
turnover [41]. In ants (and all Hymenoptera), males are
haploid, and therefore, competition between centromeres
is absent during male meiosis. Thus, selection for suppres-
sion of centromere drive during male meiosis would also
be expected to be relaxed in Hymenoptera. This leads to
an intriguing speculation that centromere complexity, ex-
pansion, and turnover in hymenopteran species is greater
relative to species with both male and female meiosis.
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One unanswered question is why haven’t long centro-
meres been reported more frequently in Hymenoptera?
We suggest a reason is that long centromeres in Hymen-
optera simply may have gone undetected as a result of
previous karyotyping methods. Although there have
been many karyotype studies in Hymenoptera, the vast
majority of these cytological studies used colchicine or
cocemid [28, 42], a mitosis inhibitor. These inhibitors
arrest cells at metaphase, making it easier to find cells to
karyotype, but prolonged exposure leads to artificially
over-condensed chromosomes. Resolution of centromere
morphology on such small chromosomes is difficult.
Indeed the original karyotypes for S. invicta are tiny and
long centromeres cannot be seen [27]. Additionally,
given the frequent goal of categorizing centromeric
locations (e.g., acrocentric, metacentric), there may have
been inadvertent biases to focus on chromosome photos
with well defined X’ configurations. In this study we did
not use a cell cycle inhibitor, a choice that likely consid-
erably aided our ability to detect long chromosomes. We
suggest that with better microscopy resolution and
examination of less compacted chromosomes, more
ants, other Hymenoptera, and other haplo-diploid
organisms with long centromeres likely will be found.

Conclusions

We describe a case of evolution of long centromeres in
the fire ant Solenopsis invicta; centromere lengths are on
average one-third of each chromosome. Several other
species also have long centromeres while one species has
the typical shorter centromeres. Expansion of this
centromeric repeat likely occurred multiple times in fire
ants. We also identified and characterized the major
centromeric DNA repeat. Our results are consistent with
a model of simple runaway centromere expansion due to
centromere drive. We suggest that expanded centro-
meres may be more prevalent in ants, and other haplo-
diploid organisms, than previous considered.

Methods

Ant sampling

Three ant species were sampled in Taiwan: S
invicta—Taoyuan, S. geminata—Taichung and Tainan,
and S. indagatrix — Nantou. The remaining species were
sampled from: S. richteri —Pergamino, Argentina; S.
macdonaghi—Antonio Joao, Brazil; S. daguerrei—Dourados,
Brazil; and S. aurea —Indio, California. The S. aurea and
three South American samples were stored in 95 % ethanol
prior to analysis.

Bacterial artificial chromosome (BAC) manipulations

In screening BAC clones for a previous study [18], clones
Al, A5, and A8 (plate 73); B18 (plate 21); F22 (plate 68);
and J6 (plate 7) of the SW_Ba BAC library (Clemson



Huang et al. BMC Evolutionary Biology (2016) 16:189

University Genomics Institute, Georgia, USA) were found
to contain tandemly-repeated copies of the 109 bp CenSol
sequence. To obtain DNA for end sequencing, these BAC
clones were cultured in 12 or 48 mL LB medium contain-
ing 12.5 pg/ml chloramphenicol at 37 °C for 16 h and then
purified using the Qiagen® Plasmid Mini Kit. Purified BACs
were end sequenced with primers T7P and SP6. High-
quality DNA sequences from the ends of these six clones
(12 reads total) were chosen for CenSol sequence compari-
sons (see below). Centromeric monomer sequences are in
Additional file 4: Figure S1A and Additional file 7.

To screen for the presence of the CenSol repeat
sequences in other clones from the SW_Ba BAC library, a
PCR assay was developed to amplify the repeat monomer
(and its tandem multimers). Two primers, AlrepV1F (5'-C
GTGTTTTACGTTAAAA-3") and AlrepVIR (5'-TGAGA
TATCGCATAGATA-3’), were designed for the highly
conserved region of the end sequences obtained from BACs
Al, A5, and A8 (above). In total we screened an additional
960 clones (plates 96, 145, and half of plate 146) from the
BAC library. We used a 384-well pin replicator to transfer
approximately 1 ul of the thawed cultures from each clone
to start 200 pl LB medium cultures containing 12.5 pg/ml
chloramphenicol in 384-well deep well plates. BAC cultures
were grown overnight at 37 °C and then 1 ul of the liquid
culture was used for PCR amplifications of the repeat
sequence. The PCR reactions were performed in 25 pl vol-
umes containing 1X PCR buffer, 0.4 mM dNTPs, 0.2 uM
AlrepV1F and AlrepVIR primers, and 1 U Super-Therm
Gold Hot-start Taq DNA polymerase (JMR Holdings,
Taiwan). PCR amplifications were performed with the fol-
lowing profile: initial 10 min denaturation at 95 °C; followed
by 40 cycles of 30 s denaturation at 95 °C, 30 s annealing at
52 °C, and 30 s extension at 72 °C; and a final 7 min exten-
sion at 72 °C. PCR products were run on 1.5 % agarose gels
containing SYBR® Safe DNA gel stain (Life Technologies)
and visualized with the Quantum ST4-1000 gel imaging
system (Vilber Lourmat).

Bioinformatics analysis for tandem repeat identification
and repeat clustering

We modified a previously developed bioinformatics
pipeline [20] to identify potential centromeric sequences
in the draft genome assemblies of S. invicta [19] and S.
geminata (unpublished data). We searched for tandem
repeats (satellites) with at least two copies within input
scaffolds using Tandem Repeat Finder (TRF) [29] with
parameters (Match = 1, Mismatch = 1, Indel = 2, Probabil-
ity of match = 80, Probability of indel = 5, Min score = 200,
Max period =750) as described in [20]. We retained
monomers greater than 50 bp and conducted an all-
versus-all BLAST (megaBLAST) [43] against a database of
dimer versions of monomers. We used SiLiX software [44]
to group monomers (BLAST E-value<le-5 and>75 %
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sequence identity) into clusters. Custom Perl scripts were
used to determine the total number of counts, the modal
length, the number of counts for the repeat with modal
length, and the GC content of each satellite for each
species. To compare the top ten satellites between species,
we conducted all-versus-all BLAST comparisons.

Plasmid cloning and DNA manipulations

To obtain single CenSol repeats from S. invicta, we cloned
random 109 bp fragments from an EcoRV digested BAC
clone (A8 of plate 73) into plasmids. The CenSol-F (5'-A
TCTCACGTGTTTTACG-3') and CenSol-R (5'-ATCGCA
TAGATAGCGATTC-3") primer pair and the pCenSol-inv_
4 plasmid template (Sinv_44 sequence in Additional file 4:
Figure S1A and Additional file 7) were used for the CenSol
probe amplification using the PCR DIG Probe Synthesis Kit
(Roche). For S. geminata, we generated five CenSol satellite
plasmids (pCenSol-gemI-5) by first using the AlrepV1
primer pair to PCR amplify CenSol from genomic DNA
and then cloning the PCR products greater than 2 Kb.

A single copy of Solmin (Solenopsis minor, the second
most abundant satellite repeat) from S. invicta was cloned
from a BspHI digested BAC clone (C16 of plate 73) into a
plasmid, pSolmin. The primers Solmin F (5'-TGATGG
ATCGAATCGCTA-3') and Solmin R (5'-TGAAAAAA
GTTAAAACTC-3’) and the plasmid template were used
for probe synthesis as above.

For Southern analysis, 200 ng of genomic DNA,
extracted from single adult males of S. invicta and S.
geminata, were digested with the EcoRV or BsaAl
restriction enzyme (10 units) at 37 °C for 3 h. Uncut and
digested DNA was separated by agarose gel electrophoresis
and stained in-gel with SYBR® Safe (Life Technologies). The
DNA in the agarose gel was transferred to a positively-
charged nylon membrane (Biodyne B, Pall) by capillary
transfer for Southern analysis [45]. Hybridizations were
performed using DIG-labeled CenSol DNA. Alkaline
phosphatase conjugated anti-DIG antibody combined with
NBT/NCIP or CSPD substrate (Roche) was then used to
detect the hybridization signals.

For the CenSol copy number comparisons between S.
invicta and S. geminata, a slot blot with serially diluted
genomic DNA from single adult males was used. For the
comparison among the seven Solenopsis species, female
pools (S. invicta, S. geminata, S. macdonaghi, S. aurea,
S. daguerrei, and S. indagatrix) or a diploid male pool
(S. richteri) was used. For both S. invicta and S.
geminata, the samples for the two slot blots (Figs. 4b
and 5a) were from different colonies, and those for the
Southern analyses (Fig. 4a) were from a third colony.
Hybridization and detection were performed as above
for the Southern analyses. Methylene blue (0.02 % in
0.5 M sodium acetate, pH 5.2) staining was used to
detect and control for the amount of loaded DNA.
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To calculate the relative copies of CenSol in the seven
genomes, we divided the CenSol hybridization signals by
the staining intensities of total DNA. Due to the
detection limit of methylene blue staining, we used the
staining intensities at 500 ng for the seven genomes as
the loading control for all respective dilutions. We
calculated the relative amount of CenSol by averaging
two unsaturated dilutions (Fig. 5a, red boxes). We used
S. geminata as a reference to recalibrate their relative
amounts. Signals on blots were digitalized by scanning
(NBT/NCIP) or using the UVP Imaging system (CSPD
and methylene blue staining) and quantified using the
ImageQuant software.

Fluorescence in situ hybridization (FISH) and image
analysis

For the BAC-FISH analysis, we followed the instructions
for probe preparation in the FISH Tag™ DNA Multicolor
Kit (F32951, Invitrogen) with details indicated as follows.
BAC clone A8 from plate 73 was used for the DNA tem-
plate. Probe was generated by a nick translation reaction
with amino-allyl modified dUTP (aa-dUTP) and labeled
with the Alexa Fluor 488 fluorescent dye. For the CenSol
and Solmin probes, the PCR products were amplified
with a deoxynucleotide mixture containing aa-dUTP
(aa-dUTP:dTTP =6:1) and subsequently labeled with
Alexa Fluor 488 and Alexa Fluor 594, respectively. Meta-
phase cells of S. invicta and S. geminata were collected
from gonadal tissues of sexual brood at the 4™ instar
larval stage; this stage is easily identifiable based on large
size. Due to the absence of sexual brood in our S.
indagatrix colony, metaphase cells were obtained from
imaginal discs of worker brood at the 4™ instar larval
stage. In addition we counted the chromosome number
for ploidy. Chromosome spreads and FISH manipula-
tions were as previously described [18]. Diploid
interphase cells of S. invicta and S. geminata were from
gonadal tissues of L4 larvae, whereas cells of S
macdonaghi, S. daguerrei, and S. aurea were from adult
brain tissue. Chromosomes were counter-stained with
DAPI fluorescent dye. Photos were captured using the
DeltaVision imaging system and processed by deconvo-
lution. Black and white images were false-colored (Alexa
Fluor 488: green; Alexa Fluor 594: blue) and separate
images were merged using Photoshop software.

The length of the primary constrictions and the cover-
age rate of CenSol signals on chromosomes of S. invicta
and S. geminata were measured as previously described
[9] for four images (cells) of a single haploid male by
Image] software [46]. The DNA amount of the primary
constrictions was calculated based on the proportion of
DAPI fluorescence intensity within the primary constriction
compared to that of the whole chromosome using an
estimated haploid genome size of 484 Mb [19]. The
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centromeric positions were defined based on the arm ratio
of chromosome termini to the edge of CenSol signal [47].

Evolutionary analyses
Multiple sequence alignment (MSA) by ClustalW [48]
was performed using 45 and 52 CenSol units with good
Sanger sequencing traces from six S. invicta BAC clones
and five S. geminata clones (pCenSol-gemI-5). Gene trees
were constructed using the Maximum Likelihood model
and bootstrapping (1000 times) with the MEGA program
[49]. The species-specific CenSol consensus clone se-
quences for S. invicta and S. geminata were generated
from the MSA using VectorNTI software (Life Technology)
and used as the input for BLAST queries [30] against the
NCBI nucleotide nr database [50], Repbase [51], all candi-
date centromeric repeats [20, 52, 53], and the draft ge-
nomes of S. invicta and S. geminata. The 10,469 and 5423
unique sequences having exactly 109 bp from the BLAST
results of the S. invicta and S. geminata genomes were used
to construct sequence logos with WebLogo software [54].
The phylogenetic relationship of six Solenopsis species (S.
invicta, S. geminata, S. richteri, S. aurea, S. macdonaghi,
and S. daguerrei) was previously determined based on
molecular evidence [33, 34]. We placed S. indagatrix as an
outgroup to these six based on its status as a thief ant,
morphology, and karyotype differences: S. indagatrix (1n =
11, Additional file 4: Figure S4A); S. aurea, S. geminata, S.
invicta, and S. richteri, (In=16) [27, 28]. We used the
quantification values of CenSol from the slot blot
hybridization (Fig. 5a) as the input to reconstruct the ances-
tral state at all nodes of the tree in Mesquite 3.04 [55]. The
state of CenSol values was coded as a continuous character.
Ancestral states were calculated using both linear-change
and squared-change parsimony in Mesquite 3.04 [55].
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