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Resurrecting ancestral structural dynamics
of an antiviral immune receptor: adaptive
binding pocket reorganization repeatedly
shifts RNA preference
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Abstract

Background: Although resurrecting ancestral proteins is a powerful tool for understanding the molecular-
functional evolution of gene families, nearly all studies have examined proteins functioning in relatively stable
biological processes. The extent to which more dynamic systems obey the same ‘rules’ governing stable processes
is unclear. Here we present the first detailed investigation of the functional evolution of the RIG-like receptors (RLRs),
a family of innate immune receptors that detect viral RNA in the cytoplasm.

Results: Using kinetic binding assays and molecular dynamics simulations of ancestral proteins, we demonstrate how a
small number of adaptive protein-coding changes repeatedly shifted the RNA preference of RLRs throughout animal
evolution by reorganizing the shape and electrostatic distribution across the RNA binding pocket, altering the
hydrogen bond network between the RLR and its RNA target. In contrast to observations of proteins involved in
metabolism and development, we find that RLR-RNA preference ‘flip flopped’ between two functional states, and shifts
in RNA preference were not always coupled to gene duplications or speciation events. We demonstrate at least one
reversion of RLR-RNA preference from a derived to an ancestral function through a novel structural mechanism,
indicating multiple structural implementations of similar functions.

Conclusions: Our results suggest a model in which frequent shifts in selection pressures imposed by an evolutionary
arms race preclude the long-term functional optimization observed in stable biological systems.
As a result, the evolutionary dynamics of immune receptors may be less constrained by structural epistasis and
historical contingency.

Keywords: RIG-I, RIG-like receptors, Ancestral reconstruction, Antiviral immunity, Evolution of immunity,
Molecular evolution, Innate immunity

Background
Resurrection and biochemical analysis of ancestral
proteins is a powerful technique for understanding the
molecular-structural basis of functional evolution [1, 2].
Example studies have elucidated the precise details by
which evolutionary changes in sequence produce
changes in protein structure and how structural changes
alter molecular function, generating a wealth of potentially

generalizable results about how structural properties may
affect the evolution of molecular function [3–18].
One of the major limitations of current ancestral

sequence resurrection (ASR) studies is that they
have—almost without exception—examined molecular
systems that function in basic cellular processes and
organism development, systems that are expected to be
relatively slow-evolving [19–24]. In contrast, proteins
comprising the immune systems of multicellular eukary-
otes are often involved in evolutionary arms races with
pathogens, leading to rapid and highly variable evolution-
ary trajectories [25–27]. Proteins directly interacting with
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pathogen factors are expected to evolve particularly rap-
idly, and genome-wide comparisons have generally sup-
ported this expectation [28–30]. No detailed ASR studies
have yet been conducted on primary immune receptors,
so we have little experimental information about how the
evolution of structure-function occurs in these systems,
particularly across large evolutionary timescales.
Another major limitation of existing ASR studies is

that they have focused almost exclusively on proteins
that function by binding small ligands such as sugars,
hormones or other metabolites [8, 13, 16–18, 31, 32] or
by light activation [12, 15]. Short-term evolution of
macromolecular interactions has been examined through
experimental evolution and studies of protein affinity
maturation [33–36], and a few ASR studies have begun
investigating the evolution of protein interactions with
larger macromolecules [37–40]. However, the long-term
molecular evolution of macromolecular interactions
remains under-studied. Structural properties important
for the evolution of macromolecular interactions may be
different from those driving protein-small ligand interac-
tions, and the extent to which results obtained in one
case can be generalized to the other is not clear [41, 42].
The RIG-like receptors, RIG-I (DDx58) MDA5 (IFIH1)

and LGP2 (DHx58), form a complement of cytoplasmic
RNA-binding proteins contributing to innate antiviral
immunity in a wide variety of vertebrates, including
all mammals [43–46]. RIG-like receptors (RLRs) bind
viral-derived RNAs and signal cellular immune re-
sponses, primarily through direct interactions with the
mitochondrion-anchored signal transducer, IPS1 [47, 48]
(Additional file 1: Figure S1).
In order to function as effective antiviral receptors,

RLRs must collectively recognize a variety of viral-
associated RNA types without binding the specific motifs
associated with cytoplasmic host RNAs. Although the
precise ligand complement of human and other verte-
brate RLRs has not been determined, RLRs have been
shown to recognize specific end structures of RNA mol-
ecules via a C-terminal RNA recognition domain (RD),
providing a structural mechanism capable of differentiat-
ing viral-derived from host RNA [49–51]. An upstream
helicase and intervening pincer domain also contribute
to RLR-RNA binding, primarily through interactions
with the RNA backbone [52].
RIG-I—by far the best understood of the RLRs—recog-

nizes single- and double-stranded RNA molecules with
and without 5′ triphosphate (5′ppp) moieties but does
not recognize the 7-methylguanylate cap typical of
eukaryote mRNA [52–54] Additionally, RIG-I exhibits
severely reduced immune signaling activity from dsRNA
with 3′ or 5′ overhangs, which are typical of mature
host tRNAs, rRNAs and microRNAs [55–57]. Less is
known about the specific RNA ligands bound by MDA5

and LGP2. LGP2 appears to bind RNA moieties similar
to those of RIG-I as well as additional RNA end struc-
tures [58, 59]. The natural MDA5 ligands have remained
the most mysterious, although evidence suggests that
MDA5 may cooperatively bind long—and possibly
short—blunt-ended dsRNA molecules or other specific
virus-produced RNAs [59–61].
We have recently found that RLRs were present in the

earliest multicellular animals and functionally diversified
through a series of gene duplication events [46]. Our
analysis uncovered evidence for recurrent protein-
coding adaptation in RLRs throughout the mammalian
lineage and in the human population, particularly target-
ing the RNA recognition domain, consistent with an
‘arms race’ model in which RLRs adapt their RNA-
binding repertoire in response to rapidly-evolving viral
threats.
In our view, the RLRs provide an excellent model with

which to begin extending current ASR results obtained
from slow-evolving small-ligand-binding proteins to
fast-evolving immune receptors interacting with larger
macromolecules. Better understanding the evolutionary
trajectories leading to RLR functional diversity is ex-
pected to shed light on how pathogen-driven arms races
can shape the molecular functions of primary immune
receptors and how structural features of the receptors
affect potential evolutionary trajectories.

Results and discussion
The aim of this study is to characterize how RNA pre-
ference changed during early RIG-like receptor (RLR)
evolution. We employed an approach beginning with
phylogenetic analysis to establish the RLR protein family
tree, followed by analysis of protein-coding adaptation to
identify potential functional shifts in RNA binding.
Functional shifts were confirmed using ancestral se-
quence reconstruction and kinetic analyses of ancestral
proteins. We used molecular dynamics simulations of
ancestral proteins to characterize the likely mechanisms
driving observed shifts in RNA preference and con-
firmed these by measuring the RNA-binding kinetics of
mutant ancestral proteins incorporating historical
amino-acid substitutions. This strategy represents a gen-
eral approach for examining the mechanistic basis for
molecular-functional evolution in protein families [62]
(see Methods for details).

RIG-like receptors (RLRs) arose in early animals and
diversified by gene duplication and protein-coding
adaptation targeting the RNA recognition domain (RD) in
deuterostomes and jawed vertebrates
In order to establish a robust framework within which to
examine RIG-like receptor (RLR) functional evolution,
we reconstructed the phylogeny of full-length RLR
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protein sequences using maximum likelihood, assuming
two different alignments in order to incorporate alignment
uncertainty (see Methods; Additional file 1: Table S1).
Consistent with our previous study [46], the consensus
tree across different alignments suggested the RLRs origi-
nated in the earliest multicellular animals and diversified
by two major gene duplication events, one in bilateria and
the other early in the jawed vertebrate lineage (Fig. 1). All
bilaterian RLRs formed a monophyletic clade separated
from Amphimedon and Nematostella RLRs with ≥0.94
SH-like aLRT, depending on the alignment. Our analysis
confidently grouped deuterostome and protostome RIG-Is
(support ≥0.92), suggesting that the earliest RLR gene
duplication occurred before the protostome-deuterostome
split. Vertebrate MDA5 and LGP2 sequences—along with
Saccoglossus and Branchiostoma MDA5/LGP2—were
monophyletic with maximal support, placing the MDA5-
LGP2 duplication very early in the jawed vertebrate
lineage, consistent with our previous findings.

The phylogeny reconstructed using sequence data implies
a loss of MDA5/LGP2 in all protostomes and a second loss
of RIG-I in arthropods (Additional file 1: Figure S2). The
alternative phylogeny, in which the first RLR gene duplica-
tion occurred in deuterostomes after the protostome-
deuterostome split, is more parsimonious in gene loss
events—requiring only a single loss of the ancestral RLR
in arthropods—but is consistently rejected by phylogenetic
analysis (SH-test p < 0.023; see also [46]). Although it is
impossible to completely rule out phylogenetic error, we
have not observed any evidence for long-branch attraction
or other systematic artifacts; in our previous analysis,
the same phylogeny was consistently recovered using
various alignments, inference methods, inclusion/ex-
clusion of fast-evolving species and inclusion/ex-
clusion of outgroup sequences [46]. The resolution of
our previous phylogeny using additional sequence
data and new alignments further supports its general
robustness.

Fig. 1 RIG-like receptors (RLRs) arose in early animals and diversified by gene duplications in bilateria and jawed vertebrates. We reconstructed
the RLR gene phylogeny by maximum likelihood using two different alignments of all available RLR protein sequences (see Methods). Branch
lengths are scaled to the average number of substitutions/site. We plot SH-like aLRT clade support from PROBALIGN (top) and MAFFT (bottom)
alignments; clades with <0.8 support are collapsed to polytomies. Sequences from major monophyletic taxonomic groups are collapsed, and
genbank IDs are provided for sequences from individual species. Bold red branches indicate significant support for protein-coding adaptation
specific to the RNA-recognition (RD) domain (p < 0.01 after correction for multiple tests; see Methods). White circles indicate ancestral proteins
resurrected in this study
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Although the evolution of a protein family’s molecular
function can occur in the absence of adaptation or posi-
tive selection, reliable identification of protein-coding
adaptation is a strong predictor of changes in molecular
function, as adaptive processes can only occur when
there is some phenotypic change visible to selection. We
investigated the evolutionary forces driving RLR func-
tional divergence using a branch-sites test to identify
protein-coding adaptation in specific functional domains
across specific branches on the phylogeny (see Methods).
After correcting for multiple tests, we found strong sup-
port for protein-coding adaptation in one lineage follow-
ing each of the major RLR duplication events (Fig. 1). In
all cases, adaptation was specific to the C-terminal RNA
recognition domain (RD) and was not found affecting any
other functional domain (Additional file 1: Figure S3).
These results are generally consistent with our previous
findings of recurrent protein-coding adaptation in mam-
malian and human RLR RDs [46].
Following the earliest duplication of the ancestral RLR

(ancRLR), protein-coding adaptation specific to the RD
was detected along the branch leading to the first ances-
tral MDA5/LGP2 (ancMDA5/LGP2a) but not along that
leading to ancRIG-I. We observed evidence for contin-
ued adaptation of the RD along the ancestral MDA5/
LGP2 branch before the MDA5-LGP2 duplication and
again in the LGP2 lineage after the MDA5-LGP2 split
(Fig. 1). We did observe evidence for protein-coding
adaptation in the helicase, pincer, CARD signaling do-
mains and other regions of the RLR protein sequence
following the initial diversification of RIG-I, MDA5 and
LGP2 lineages (Additional file 1: Figure S3). However,
only the RD was inferred to have evolved adaptively
along the earliest branches of the RLR tree prior to the
establishment of these three major RLR lineages.
Although the branch-sites test is generally considered

robust [63–66], concerns have been raised about poten-
tially high false-positive rates under some conditions
[67, 68]. However, false-positive rates were always <0.05
when we simulated codon sequences along the maximum-
likelihood RLR phylogeny using a variety of empirically-
derived neutral scenarios (Additional file 1: Figure S4).
Although it is impossible to completely rule out false-
positive detection of protein-coding adaptation, we ob-
served no evidence suggesting inflated false-positive rates
in this case.
Consistent with evidence from analyses of protein-

coding adaptation, we found that the branch
lengths—measuring the expected number of protein
substitutions/site—were generally longer on the earliest
branches of the RLR phylogeny when optimized using
only RD sequences, whereas later branches had longer
lengths when optimized using the helicase + pincer do-
mains, compared to the RD (Additional file 1: Figure S5).

Together, these findings suggest that the C-terminal RNA
recognition domain (RD) tended to evolve faster during
the earlier history of RLR evolution, whereas the helicase
and pincer domains exhibited faster protein-coding evolu-
tion only after the major RIG-I, MDA5 and LGP2 lineages
were established.
The helicase, pincer and RD domains cooperatively

bind viral RNA ligands, with the RD specifically recog-
nizing the end structure of the RNA and the helicase +
pincer interacting primarily with the RNA backbone
[52]. Our results suggest that early functional evolution
of RLR-RNA recognition may have occurred primarily
through adaptively-driven changes in the RD, whereas
later changes in RLR-RNA binding may have involved
evolution of the helicase + pincer domains.
To examine the early functional evolution of RLR-

RNA recognition in more detail, we reconstructed
ancestral protein sequences at key early nodes on the
phylogeny (Fig. 1), inferred structural models of ances-
tral sequences (see Methods) and mapped putatively-
adaptive substitutions to specific locations on the pro-
tein sequence (Fig. 2). In general, we found that inferred
adaptive substitutions tended to cluster around the ca-
nonical “RNA-binding loop,” a flexible region of the RD
that anchors the RNA ligand and makes key polar
contacts with 5′ppp moieties in human RIG-I [53, 69].
Consistent with a potential functional role for adaptive
changes in the RNA-binding loop, we observed a shift in
the electrostatic distribution of the RNA-binding loop
from strongly basic in ancRLR, ancRIG-I and human
RIG-I to strongly acidic in ancMDA5/LGP2a and b
(Fig. 3). The evolution of an acidic ‘RNA-binding loop’
in ancMDA5/LGP2a is expected to alter key electro-
static interactions likely to be important for RNA
binding [46, 69, 70].
Also consistent with a potential role in altering RD-

RNA interactions, we observed changes in the stability
of the RNA-binding loop during molecular dynamics
simulations of ancestral RDs bound to RNA (Fig. 4).
Specifically, residues comprising the RNA-binding loop
fluctuated very little over the course of molecular dy-
namics simulations of ancRLR, ancRIG-I and human
RIG-I RDs bound to blunt-ended or 5′ppp double-
stranded RNA ligands, suggesting that these residues are
likely stabilized by strong interactions with the RNA.
Other ancestral RLRs in the MDA5/LGP2 lineage exhib-
ited much larger root mean square fluctuation (RMSF)
of residues in the RNA-binding loop, suggesting a
general loss of stabilizing RNA interactions along this
lineage. We observed a similar increase in the fluctu-
ation of the RNA-binding loop in ancMDA5/LGP2a and
ancMDA5/LGP2b during molecular dynamics simula-
tions of the combined helicase + pincer + RD domains,
suggesting that this observation is likely relevant to
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general RLR-RNA interactions and not an artifact of
simulating only the RD bound to RNA (Additional file 1:
Figure S6). Our results are generally consistent with
recent structural studies of chicken LGP2 and MDA5,
which also found the ‘RNA-binding loop’ failed to make
strong contacts with RNA ligands [59]. Overall, these
results suggest that the RNA-binding loop lost the cap-
acity to bind blunt-ended and 5′ppp dsRNA ligands
early in the MDA5/LGP2 lineage following the first RLR
gene duplication in bilateria, and this functional shift
was likely retained throughout MDA5/LGP2 evolution-
ary history.
Consistent with this general model, we found that the

“RNA-binding loop” of ancMDA5/LGP2a and ancMDA5/
LGP2b exhibited reduced capacity to form hydrogen
bonds with RNA ligands over the course of molecular
dynamics simulations, compared to ancRIG-I (Fig. 5;
Additional file 1: Figure S7). Specifically, MDA5/LGP2a
lost a key polar contact conserved in ancRLR and the
RIG-I lineage (K49, see Fig. 2), which appears to stabilize
both blunt-ended and 5′ppp dsRNA (Fig. 5). Additionally,
K88 appears to form a strong hydrogen bond with
the 5′ppp moiety in ancRLR and ancRIG-I, whereas
the corresponding Ser in the ancMDA5/LGP2 lineage
does not stabilize the 5′ppp dsRNA ligand (see Figs. 2
and 5). These losses of key polar contacts with the
RNA ligand along the MDA5/LGP2 lineage were ob-
served whether we simulated only the RD bound to
RNA (Fig. 5) or the complete helicase + pincer + RD

(Additional file 1: Figure S7), suggesting that adaptively-
driven changes in the RLR RD may have altered the
hydrogen bond network stabilizing RLR-RNA interac-
tions, particularly early in the establishment of the
MDA5/LGP2 lineage.
Maximum likelihood reconstructions of ancestral RD

sequences were highly similar to those found in our pre-
vious study [46], and support for ancestral sequences
was generally improved (Additional file 1: Figure S8).
For each of the ancestral sequences reconstructed, >
47.5 % of ancestral states were reconstructed with >0.95
posterior probability; > 50.8 % of states were recon-
structed with >0.9 posterior probability, and >65 % of
states had >0.8 posterior probability. Only two sites in
each of ancRLR, ancMDA5/LGP2a and ancMDA5/
LGP2b had alternative reconstructions with posterior
probability >0.3, and ancRIG-I had three such sites. All
alternative reconstructions were considered biochem-
ically conservative, and positions with plausible alterna-
tive reconstructions generally occurred in parts of the
RD structure unlikely to strongly impact RNA binding
(Additional file 1: Figure S8).
When we simulated sequence data using the

maximum-likelihood tree and best-fit evolutionary
model, error rates for ancRLR and ancRIG-I RD recon-
structions were <0.03, with remaining ancestral sequences
having error rates <0.02 (Additional file 1: Figure S8).
Considering residues of the same general biochemical
class as equivalent reduced all error rates to < 0.01.

Fig. 2 Adaptive protein-coding substitutions clustered near the RNA binding loop in the C-terminal RNA recognition domain (RD) along the
lineages leading from ancRLR to ancLGP2 (see Fig. 1). We show the consensus sequence alignment of the three human RLR RDs and the
ancestral RLRs resurrected in this study, with residues colored by biochemical classification and sequence conservation. Stars above the alignment
indicate significant support for protein-coding adaptation at specific residues along the branches separating ancLGP2 from ancMDA5/LGP2b (red),
ancMDA5/LGP2b from ancMDA5/LGP2a (green) and ancMDA5/LGP2a from ancRLR (blue), respectively (see Fig. 1). Adaptive substitutions were
inferred by Bayes-empirical-Bayes posterior probability >0.95 using the branch-sites test for positive selection (see Methods). The location of the
RNA binding loop is indicated, and approximate secondary structural elements are shown below the alignment
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Ancestral reconstructions of the helicase + pincer domains
were even more strongly supported than those of the
RD (Additional file 1: Figure S9). The number of an-
cestral states across the helicase + pincer reconstructed
with >0.9 posterior probability was always >53 %; fewer
than 0.06 % of states had alternative reconstructions with

posterior probability >0.3, and estimated error rates were
always <0.03.
Ancestral sequences were reconstructed using full-

length RLRs aligned by PROBALIGN, which pro-
duced slightly stronger support for the consensus
phylogeny, compared to the MAFFT alignment (see

Fig. 3 Adaptive substitutions alter RNA recognition domain (RD) structure and RNA-binding preference throughout RIG-like receptor (RLR)
evolution. We inferred structural models of human and ancestral RLR RDs (see Figs. 1 and 2) bound to blunt-ended double-stranded RNA and
dsRNA having a 5′ triphosphate (5ppp). We show the central structures of each RD-RNA from replicate molecular dynamics simulations, with
electrostatic potential (kT/e) displayed on the molecular surface (see Methods). Dotted ovals indicate the location of the canonical RNA binding
loop on each structural model. We resurrected ancestral RLR RDs and measured steady-state (Kd) and initial (Km) RNA binding affinities
(see Methods). We plot –log-transformed binding affinities, with longer bars indicating higher affinity. Standard errors over three replicates are
indicated. For ancRLR, ancMDA5/LGP2a and ancMDA5/LGP2b, we compare RNA binding affinities measured for the RD to affinities measured
using the combined helicase + pincer + RD domains
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Fig. 1). Reconstructing ancestral RLR RDs at key
nodes on the phylogeny using the MAFFT alignment
produced sequences >73 % identical (>79 % identical
when considering biochemically similar residues as
equivalent) to those produced from the PROBALIGN
alignment, and the important sequence differences
among ancestral RLR RDs outlined above were
present in the alternative ancestral reconstructions
(Additional file 1: Figure S10A).

We found ample sequence similarity between all
ancestral RLR RDs and human RIG-I RD to support
accurate structural homology modeling of ancestral pro-
teins (48 % identity for ancRLR, 43 % for ancMDA5/
LGP2a, 41 % for ancMDA5/LGP2b, 37 % for ancMDA5,
36 % for ancLGP2 and 49 % for ancRIG-I) [71–73]. Se-
quence identity between ancestral RLR helicase + pincer
domains and human RIG-I helicase + pincer were simi-
larly high (46 % for ancRLR, 37 % for ancMDA5/LGP2a

Fig. 4 The RNA-binding loop of ancRLR and the RIG-I lineage fluctuates less over the course of molecular dynamics simulations, compared to the
RNA-binding loop of other ancestral and human RLRs. We plot the root mean square fluctuation (RMSF) of each residue on the molecular surface
of ancestral (white boxes) and human (gray boxes) RLR RNA-recognition domains (RD), averaged over replicate molecular dynamics simulations
(see Methods). Higher values of RMSF indicate that the residue moved more over the course of the dynamics simulations. Dotted oval indicates
location of the RNA-binding loop on each structure. See Figs. 1 and 2 for locations of each ancestral RLR on the phylogeny and ancestral RD
sequences, respectively
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and 36 % for ancMDA5/LGP2b). Consistent with ex-
pectation based on high sequence similarity of ancestral
RLRs to the crystalized human RIG-I, objective measure-
ments of structural modeling quality were generally high
(Additional file 1: Table S2). Conducting replicate mo-
lecular dynamics simulations and examining the result-
ing ‘central’ structures (see Methods) further improved
the quality of inferred structural models (Additional
file 1: Table S2).
We ran molecular dynamics simulations for 11 ns, ex-

cluding the first nanosecond as ‘burnin’ (see Methods).
All simulations of RDs bound to RNA appear to have
reached stationarity following burnin (Additional file 1:
Figures S11–S13). Energy, temperature and pressure par-
ameter values fluctuated randomly around a relatively
stable average (Additional file 1: Figure S11), as did the
volume and density of the simulated solvent box
(Additional file 1: Figure S12). The radius of gyration,
root mean squared deviations and minimum atom-atom
distances also exhibited little directional trend following
burnin—although some simulations did exhibit directional
trends during the burnin period—and the minimum
atom-atom distance never fell below 2 nm (Additional
file 1: Figure S13). Molecular dynamics simulations of

combined helicase + pincer + RD domains bound to RNA
exhibited similar evidence for stationarity (Additional
file 1: Figures S14–S16). Best-fit linear regressions to
each simulation time course series exhibited little de-
viation from zero slope. The average absolute-value of
best-fit slope was 4.4e−3, the median was 2.1e−5 and
the largest inferred slope was 7.6e−2 in absolute value.
Although it is not possible to completely rule out po-

tential errors in ancestral sequence reconstruction,
structural modeling or dynamics simulations, we did not
observe any compelling evidence to suggest high poten-
tial for errors in these inferences. As a whole, our results
suggest that the RLRs functionally diversified via gene
duplications in bilateria and jawed vertebrates, associ-
ated with protein-coding adaptation specifically targeting
residues in the RD likely affecting RNA binding by alter-
ing hydrogen bond networks.

RIG-like receptors (RLRs) repeatedly lost and gained
affinity for 5′-triphosphate (5′ppp) double-stranded RNA
(dsRNA)
To examine the evolution of RNA preference across the
early RLR phylogeny experimentally, we measured the
affinity with which each ancestral RLR RD bound

Fig. 5 The RNA-binding loop loses hydrogen bonding to RNA ligands in the MDA5/LGP2 lineage after the first RLR gene duplication. We plot the
proportion of molecular dynamics time points during which each residue was observed to form hydrogen bonds with the RNA ligand (red-white
gradient) or the 5′ppp moiety in particular (red-yellow gradient), averaged over replicate simulations of ancestral RLR RDs (see Methods). The
RNA-binding loop and specific residues exhibiting reduced hydrogen bonding to 5′ppp dsRNA in ancMDA5/LGP2a-b are indicated
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double-stranded RNAs (dsRNAs) having either a blunt
end or a 5′-triphosphate (5′ppp) moiety (see Methods).
These particular RNA types were chosen due to their
association with viral infections [56, 74–79], observed
differences in blunt-ended vs. 5′ppp dsRNA preference
among human and ancestral RLRs [46, 52, 53, 80–83]
and availability of crystal structures of human RIG-I
bound to both RNAs to support structural modeling and
molecular dynamics [51, 52, 84]. While we are aware
that these two RNA types may not represent the pri-
mary drivers of historical RLR evolution, they do pro-
vide an important starting point from which to begin
examining the evolution of RLR-RNA interactions (see
Conclusions).
We observed a dramatic shift in RNA preference be-

tween the ancestral RLR (ancRLR) and the first ancestral
MDA5/LGP2 after the bilaterian gene duplication
(ancMDA5/LGP2a), followed by an immediate reversion
back to the ancestral binding preference along the an-
cestral MDA5/LGP2 lineage (ancMDA5/LGP2b; Fig. 3;
Additional file 1: Figures S10B, S17–S19). Consistent
with our previous results [46], the ancestral RLR RD had
equal preference for blunt-ended and 5′ppp dsRNA (p =
0.09 for steady-state affinities; p = 0.33 for initial binding
rates), whereas ancMDA5/LGP2a RD evolved ~20-fold
reduced affinity for 5′ppp dsRNA (25.8-fold decrease in
steady-state affinity, p = 0.04; 18-fold decrease in initial
binding rate, p = 0.014). The ~3-4-fold increase in affin-
ity for blunt-ended dsRNA we observed along this
branch was not significant (p > 0.15). In contrast, the
RNA binding affinities of ancRIG-I RD were much more
similar to those of the ancestral RLR and human RIG-I
RD (p > 0.03; Additional file 1: Figures S17 and S18).
Surprisingly, we found that the RD of ancMDA5/

LGP2b bound blunt-ended and 5′ppp dsRNAs with the
same affinity, similar to what we observed for ancRLR
RD and RDs in the RIG-I lineage (p > 0.64). This was
caused by an observed ~20-fold increase in ancMDA5/
LGP2b RD’s affinity for 5′ppp dsRNA, compared to the
RD of ancMDA5/LGP2a (21-fold increase in steady state
affinity, p = 0.04; 18.5-fold increase in initial binding rate,
p = 0.01). Binding to both 5′ppp and blunt-ended RNA
types by ancMDA5/LGP2b RD were equivalent to that
of ancRLR RD, suggesting an evolutionary reversion to
an ancestral function (p > 0.08 and p > 0.73, respectively).
Ancestral RDs resurrected immediately following the
MDA5-LGP2 duplication also bound blunt-ended and
5′ppp dsRNAs with equivalent affinities (p > 0.7), ar-
guing against sequence reconstruction errors in
ancMDA5/LGP2b as a major explanation of our re-
sults (Fig. 3; Additional file 1: Figures S17 and S18). An-
cestral sequences reconstructed using an alternative
sequence alignment exhibited the same evolutionary shifts
in RNA preference, further supporting the robustness of

our findings to ancestral reconstruction uncertainty
(Additional file 1: Figure S10B).
Human LGP2 RD also bound both RNA types with

equal affinity (p > 0.24), whereas human MDA5 RD ap-
pears to have re-evolved a preference for blunt-ended
over 5′ppp dsRNA (24.7-fold higher steady-state prefer-
ence for blunt-ended dsRNA, p = 0.03; 45.3-fold higher
initial binding rate, p = 0.006), similar to what we observed
for the RD of ancMDA5/LGP2a (Additional file 1:
Figures S17 and S18). Previous studies have estab-
lished that human LGP2 RD binds RNA molecules
using structural mechanisms distinct from those of
human RIG-I RD, despite having similar RNA prefer-
ence [51, 61, 69, 85]. Our results suggest that the
similarity in RNA preference between human LGP2
and RIG-I RDs originated prior to the MDA5-LGP2
duplication (in ancMDA5/LGP2b), although it did
evolve from a (functionally) MDA5-like ancestor
(ancMDA5/LGP2a). Our finding that human MDA5
prefers blunt-ended dsRNA over 5′ppp dsRNA is also
consistent with recent analyses of chicken MDA5 [59].
Previous studies have shown that—in addition to the

C-terminal RD—RLR helicase + pincer domains con-
tribute to RNA binding and may affect RNA preference
[52, 60, 61, 85]. To determine whether changes in ances-
tral RLR helicase + pincer contributed to the evolution
of RNA preference in early animal RLRs, we compared
the RNA preferences of ancestral RLR constructs encod-
ing the complete helicase + pincer + RD domains to
those of ancestral RDs, alone. We found that ancestral
helicase + pincer + RDs exhibited the same loss of 5′ppp
dsRNA affinity along the branch leading from ancRLR
to ancMDA5/LGP2a, as well as the same reversion back
to equal blunt-vs-5′ppp dsRNA affinities in ancMDA5/
LGP2b (Fig. 3; Additional file 1: Figures S17–S19). Spe-
cifically, we observed a ~50-fold decrease in ancMDA5/
LGP2a helicase + pincer + RD’s affinity for 5′ppp dsRNA,
compared to ancRLR (p < 0.0002). AncMDA5/LGP2b
helicase + pincer + RD displayed equal preference for
5′ppp and blunt-ended dsRNA (p > 0.58), similar to
ancRLR (p > 0.42).
These results indicate that the binding shift we ob-

served for ancestral RDs is not an artifact of measuring
RD-RNA binding in the absence of other protein
functional domains and suggest that changes in the
helicase + pincer domain likely contributed little to
the early evolution of RLR-RNA preference, at least
for these two RNA types. However, later changes in
the helicase + pincer may have impacted RLR-RNA
binding of more recently-derived receptors. We did
not examine the impact of ancestral RLR CARD do-
mains on RNA binding, as RLR CARD sequences
were too divergent to reliably reconstruct ancestral
CARDs on these deep nodes of the phylogeny, and

Pugh et al. BMC Evolutionary Biology  (2016) 16:241 Page 9 of 19



CARDs are not considered to strongly impact RNA
binding in extant receptors [54, 86, 87].
Our examination of RNA preference across the early

RLR phylogeny paints a general picture in which RLRs
repeatedly gain and lose affinity for 5′ppp dsRNA, first
by losing ancestral high-affinity after the first RLR dupli-
cation in deuterostomes, then by immediately re-gaining
5′ppp dsRNA affinity along the MDA5/LGP2 lineage
and finally losing it again sometime after MDA5
diverged from LGP2 in jawed vertebrates. In contrast to
what has been observed for proteins involved in meta-
bolic and developmental processes, in which major
changes in ligand preference generally occur following
gene duplication or speciation events and are fairly con-
served across large evolutionary distances [8, 13, 16, 23,
31, 88, 89], our results suggest that the evolution of lig-
and preference in immune receptors can occur much
more rapidly, independently of gene duplications, and
may repeatedly ‘flip flop’ between two or more func-
tional states. In general, we would expect the strong and
variable selection pressures exerted on immune recep-
tors by fast-evolving pathogens to result in more rapid
and variable evolution of receptor function, and our
results are consistent with this expectation.

A complex substitution in the RNA binding loop reduced
affinity for 5′ppp dsRNA
Integrating results from analysis of protein-coding adap-
tation (Figs. 1 and 2) and molecular dynamics (Figs. 3, 4
and 5), we hypothesized that two historical substitutions
were primarily responsible for the observed loss of 5′
ppp dsRNA binding between ancRLR and ancMDA5/
LGP2a: a complex ΔEK47TEE substitution within the
canonical RNA-binding loop and a second K88S substi-
tution within the β9-α3 transition (Figs. 2 and 5). When
we introduced these mutations into the ancRLR back-
ground (ancRLRΔEK47TEE,K88S), binding to 5′ppp dsRNA
was reduced, similar to what we observed in
ancMDA5/LGP2a (7.8-fold reduction in steady-state
binding, p = 0.0008; 6.7-fold reduction in initial bind-
ing rate, p = 0.003; Fig. 6; Additional file 1: Figures S17
and S18), but binding to blunt-ended dsRNA was retained
(p > 0.18). These results indicate that the combined
ΔEK47TEE and K88S substitutions are sufficient to recap-
itulate the observed functional shift between ancRLR and
ancMDA5/LGP2a. Introducing other historical substitu-
tions around the RNA-binding pocket into the ancRLR
background did not shift ancRLR’s RNA preference
(p > 0.17; Additional file 1: Figure S17), suggesting
that ΔEK47TEE and K88S played a specific role in redu-
cing 5′ppp dsRNA binding during early RLR evolution.
Hydrogen bond networks are expected to be important

for stabilizing protein-RNA interactions. Consistent with
this expectation, we found that all ionizable residues

potentially contacting RNA ligands were heavily proton-
ated during molecular dynamics simulations (Additional
file 1: Figure S20). Molecular dynamics simulations
support the general conclusion that the ΔEK47TEE and
K88S substitutions disrupted hydrogen bonding between
the ancestral RLR RD and 5′ppp dsRNA (Additional
file 1: Figure S21). Hydrogen bonding was reduced in
the ancRLRΔEK47TEE,K88S mutant, compared to the ances-
tral RLR, both to the 5′ppp dsRNA as a whole (p = 0.03)
and to the 5′ppp moiety in particular (p = 0.02). We
observed no differences in hydrogen bonding to 5′ppp
dsRNA between the ancRLRΔEK47TEE,K88S mutant and
ancMDA5/LGP2a (p > 0.13), and no overall differences in
hydrogen bonding to blunt-ended dsRNA were observed
among any of the ancestral or mutant RDs (p > 0.23).
These results suggest that the ancRLRΔEK47TEE,K88S mu-
tant is sufficient to recapitulate not only the observed
functional shift in RNA preference but also the changes in
hydrogen bond networks expected to be responsible for
this functional shift.
Structural modeling and molecular dynamics suggest

that the ΔEK47TEE substitution introduced an electro-
static clash between the canonical ‘RNA-binding loop’
and the large 5′ppp moiety, disrupting a number of fa-
vorable protein-5′pppRNA contacts but having minimal
effect on interactions between the protein and blunt-
ended dsRNA (Fig. 6). The K49E substitution directly re-
places a strong polar contact between the protein and
the 5′ppp with a repulsive acidic residue; K49 formed
hydrogen bonds with the 5′ppp moiety in 56 % of the
sampled time points during molecular dynamics simula-
tions of ancRLR, whereas the corresponding 49E residue
did not form any hydrogen bonds in either ancMDA5/
LGP2a or the mutant ancRLRΔEK47TEE,K88S (p < 0.002;
Fig. 5; Additional file 1: Figure S22). The Δ47T insertion
is expected to exert some force to reposition the acidic
E48 closer to the bulky 5′ppp, further interfering with
its ability to engage the ‘RNA-binding loop’ (Fig. 6).
The ancestral K88 formed hydrogen bonds with the 5′

ppp moiety in 47 % of the molecular dynamics samples
from ancRLR, whereas hydrogen bonds were formed
between K88 and blunt-ended dsRNA in only 2 % of
ancRLR dynamics simulation samples (p = 0.02; Additional
file 1: Figure S20). In the case of ancMDA5/LGP2a, the
corresponding 88S residue formed hydrogen bonds with
5′ppp 13 % of the time and hydrogen bonds with blunt-
ended dsRNA 33 % of the time (p = 0.17; Fig. 5; Additional
file 1: Figure S22). The ancRLRΔEK47TEE,K88S mutant
recapitulated this loss of 5′ppp-specific hydrogen bonding
(p = 7.1e−5; Additional file 1: Figure S22), suggesting that
the K88S substitution specifically stabilizes blunt dsRNA.
The combined effect of these functional substitutions

was to shift the orientation of the 5′ppp dsRNA in the
ligand-binding pocket away from its ancestral orientation
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with the 5′ppp moiety engaged in the RNA-binding loop
(Fig. 6) and into an orientation more similar to that of the
blunt-ended dsRNA (Fig. 6). In this new orientation, the
bulky 5′ppp moiety clashes with the ‘acidified RNA-
binding loop’ and is not stabilized by 88S (Fig. 6). The
blunt-ended dsRNA lacks a bulky 5′ppp, reducing its
clash with the ‘acidified RNA-binding loop’ and allowing
88S to stabilize the sugar backbone of the 5′ terminal base
(Fig. 6).
Previous studies of slow-evolving receptors have re-

vealed instances in which, after a functional shift, subse-
quent “restrictive” substitutions can occur that prevent
the direct reversal of receptor preference [9, 90–92].

However, when we introduced the “reverse” TEE47ΔEK
substitution into the derived ancMDA5/LGP2a
(ancMDA5/LGP2aTEE47ΔEK), we observed a complete re-
version to the ancestral ancRLR function, in which
blunt-ended and 5′ppp dsRNAs are bound with equal
affinity (p > 0.13; Fig. 6; Additional file 1: Figures S17
and S18). The “reverse” ancMDA5/LGP2aTEE47ΔEK

mutant was also sufficient to revert overall hydrogen
bonding to an ‘ancestral’ condition (Fig. 6; Additional
file 1: Figures S21 and S22). The number of hydrogen
bonds formed over molecular dynamics simulations
was indistinguishable between ancRLR and ancMDA5/
LGP2aTEE47ΔEK, both to the RNA as a whole (p > 0.21) and

Fig. 6 Two complex substitutions are sufficient to recapitulate the observed shift in RNA-binding preference following the earliest RLR gene
duplication. We reconstructed ancestral RD protein sequences before and after the first RLR gene duplication (see Fig. 1), constructed structural
models of RDs bound to blunt-ended and 5′ppp dsRNAs and performed replicate molecular dynamics simulations to characterize the structural
basis for RNA binding (see Methods). We introduced the historical ΔEK47TEE and K88S substitutions into the ancRLR background as well as the
‘reverse’ TEE47ΔEK substitution into the ancMDA5/LGP2a background. We show the central structures of each RD-RNA interaction from replicate
molecular dynamics simulations, with electrostatic potential (kT/e) displayed on the molecular surface. Residues forming hydrogen bonds to the
RNA molecule in at least 50 % of sampled time points from molecular dynamics simulations (see Additional file 1: Figures S19 and S20) are shown
as sticks, with dashed yellow lines indicating hydrogen bonds. We measured steady-state (Kd) and initial (Km) RNA-binding affinities of ancestral
and mutant RDs bound to each RNA type (see Methods). We plot –log-transformed binding affinities, with longer bars indicating tighter affinity.
Standard errors over three replicates are indicated
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to the 5′ppp moiety in particular (p = 0.13). Additionally,
the 5′ppp dsRNA adopted the ancestral RLR conform-
ation, with the 5′ppp moiety engaged in the RNA-binding
loop (Fig. 6). These results suggest that the TEE47ΔEK
substitution may be primarily responsible for the differ-
ences in 5′ppp binding between ancRLR and ancMDA5/
LGP2a, and that ‘restrictive’ substitutions required to
optimize shifts in receptor function may be less likely in
fast-evolving immune receptors than in more slowly-
evolving systems.
In addition to changes in the hydrogen bond network,

we also observed some significant differences in side-
chain and RD backbone flexibility (Additional file 1:
Figure S23), the distance between the RD and its bound
ligand (Additional file 1: Figure S24), and protein sec-
ondary structure (Additional file 1: Figure S25) across
molecular dynamics simulations of different ancestral
and mutant RDs. These changes in other molecular-
dynamics properties were largely consistent with in-
ferred changes in hydrogen bonding networks, which
appear sufficient to explain the observed differences in
molecular binding kinetics.

A single amino-acid substitution restored affinity for
5′ppp dsRNA
Between the origin of ancMDA5/LGP2a and the MDA5-
LGP2 duplication in early vertebrates, we observed a
functional reversion back to ancRLR’s equal preference
for blunt-ended and 5′ppp dsRNAs, even though the
‘RNA binding loop’ remained largely acidic (ancMDA5/
LGP2b; Fig. 3). Combining information about protein-
coding adaptation (Figs. 1 and 2) and molecular dynam-
ics (Figs. 3, 4 and 5) suggested that a single H63S substi-
tution may have contributed to the observed reversion
in binding preference (see Fig. 2). To test this hypoth-
esis, we measured changes in RNA preference caused by
the single historical H63S substitution in the ancMDA5/
LGP2a background (ancMDA5/LGP2aH63S). We found
that this single substitution was sufficient to revert
ancMDA5/LGP2a’s function to the ancestral-like pattern
of equal binding to blunt-ended and 5′ppp dsRNA
observed in ancMDA5/LGP2b (Fig. 7; Additional file 1:
Figures S17 and S18). The H63S substitution increased
affinity for 5′ppp dsRNA by ~20-fold (p < 0.02), while
affinity for blunt-ended dsRNA remained unchanged
(p > 0.06). RNA binding by ancMDA5/LGP2aH63S was
indistinguishable from that of ancMDA5/LGP2b (p >
0.28), suggesting that the single substitution was suffi-
cient to recapitulate the observed functional shift from
ancMDA5/LGP2a to ancMDA5/LGP2b.
Indroducing the H63S mutation into the ancMDA5/

LGP2a background produced a modest increase in the
average number of hydrogen bonds observed over mo-
lecular dynamics simulations between the protein and

the 5′ppp dsRNA ligand as a whole (p = 0.04) as well as
to the 5′ppp moiety in particular (p = 0.005; Additional
file 1: Figure S26). No differences in overall protein-
RNA hydrogen bonding were observed between the
ancMDA5/LGP2aH63S mutant and ancMDA5/LGP2b
(p > 0.09), suggesting that the single H63S substitution is
sufficient to shift the overall hydrogen bond network
from the ancestral ancMDA5/LGP2a to the derived
ancMDA5/LGP2b conformation.
We observed a single residue, R102, which dramatic-

ally increased its capacity to form hydrogen bonds with
the RNA ligand in molecular dynamics simulations, from
forming no observed hydrogen bonds in ancMDA5/
LGP2a to forming favorable protein-RNA contacts in over
50 % of sampled timepoints in ancMDA5/LGP2b and the
ancMDA5/LGP2aH63S mutant (p < 0.02; Additional file 1:
Figure S27). R102 is located at the end of β11 in
ancMDA5/LGP2a, which is disordered in ancMDA5/
LGP2b and the ancMDA5/LGP2aH63S mutant and is far
away from the H63S substitution (Fig. 7).
Examination of the central structures from molecular

dynamics simulations revealed that the substitution of
the small serine residue for the bulky histidine at pos-
ition 63 introduced space into the region of the RNA-
binding pocket between the ‘acidified RNA-binding loop’
and the Zn-binding finger, allowing the Zn finger to shift
away from the RNA ligand. This allowed the RNA to
move closer to the protein and rotate in the binding
pocket to engage R102, which is flipped up in both
ancMDA5/LGP2b and the ancMDA5/LGP2aH63S mu-
tant, compared to the ancestral MDA5/LGP2a (Fig. 7).
As in our analysis of the ancRLR—ancMDA5/LGP2a
transition, changes in a number of molecular-dynamics
properties were consistent with a primary role for al-
teration of hydrogen bonding networks in explaining
the differences in RNA preference between ancMDA5/
LGP2a and ancMDA5/LGP2b (Additional file 1: Figures
S28–S30).
Overall, these results reveal how the introduction of a

single ‘destabilizing’ H63S substitution had a ‘ripple
effect’ through the RD structure, changing the way exist-
ing residues far away from the substitution interact with
the large RNA ligand. They also reveal that RLR RD evo-
lution has exploited multiple, structurally-distinct evolu-
tionary trajectories to implement and re-implement
similar RNA-binding functions.

Conclusions
Ancestral sequence resurrection (ASR) has allowed
researchers to experimentally evaluate hypotheses about
how the structures and functions of biological molecules
evolve, deepening our understanding of important
biological systems and informing molecular-evolutionary
theory [5, 23, 37, 93]. To date, ASR studies have
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highlighted potentially strong epistasis among substitu-
tions and historical contingency as major features of
protein evolution [9, 10, 17, 94, 95] and have supported
a model in which ancestral ‘promiscuity’ gives rise to in-
creasing specialization as proteins ‘optimize’ specific
functions over evolutionary time [39, 96, 97]. Major
changes in protein function are generally observed to
occur following gene duplication events [98–100] or spe-
ciation events [96, 101–103] and appear to be preserved
over long periods of time. However, all such studies have
examined molecular systems involved in conserved

metabolic or developmental processes that we expect to
be under relatively stable selection pressures. It is
unclear whether the results of these studies generalize to
fast-evolving immune receptors, which are expected to
experience strong and frequent shifts in selection
pressures.
Our study is the first to examine the structural mecha-

nisms underlying long-term functional evolution in a
fast-evolving primary immune receptor. In contrast to
previous studies of slow-evolving proteins, we found
no evidence for strong epistasis among substitutions,

Fig. 7 A single amino acid substitution is sufficient to recapitulate the observed re-evolution of high-affinity 5′ppp dsRNA binding between
ancMDA5/LGP2a and ancMDA5/LGP2b. We reconstructed RD protein sequences of the first (ancMDA5/LGP2a) and last (ancMDA5/LGP2b)
ancestral RLRs between the first and second major RLR gene duplications (see Fig. 1). We additionally introduced a single historical H63S
substitution into the ancMDA5/LGP2a background. We show the central structures from replicate molecular dynamics simulations of each RD
bound to blunt-ended and 5′ppp dsRNA (see Methods). Electrostatic potential (kT/e) is displayed across the molecular surface of each RNA-binding
pocket (left panels). Residues forming hydrogen bonds to the RNA in at least 50 % of molecular dynamics time points (see Additional file 1: Figures
S24 and S25) are shown as sticks, with dashed yellow lines indicating hydrogen bonds. We plot –log-transformed steady-state (Kd) and initial (Km)
RD-RNA binding rates, with bars indicating standard errors. Right panels show each RD bound to 5′ppp dsRNA. A dotted line connects the H/S63
(green) and R102 (blue) residues and the zinc-binding pocket (teal)
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historical contingency or long-term ‘functional opti-
mization.’ Rather, the repeated functional ‘flip flopping’ we
observed was primarily caused by small numbers of sub-
stitutions that clustered in and around the ligand-binding
pocket and exerted functional effects by reorganizing local
structural dynamics. We also observed little evidence for
strong structural constraints on RLR evolution, with simi-
lar functions evolving and re-evolving through novel
structural mechanisms.
This study focused on two model RNA ligands that

have been associated with viral infections [56, 74–79]
and exhibit differential binding among RLRs [53, 80–83].
We observed changes in RLR binding to these model
RNAs across evolutionary history, and the observed func-
tional changes were associated with adaptive protein-
coding substitutions. However, the functional shifts we
observed could also be side-effects of adaptation primarily
targeting other functions not examined in our study, in-
cluding binding to other ligands or viral antagonization.
Unlike studies of ligand-binding proteins involved in

more stable processes, the exact ligands recognized by
modern human RLRs are still unclear [83, 104]. The dy-
namic nature of host-pathogen molecular interactions
may result in potentially radical changes over time in the
specific pathogen-associated molecules recognized by
host immune receptors. Viral RNA sequences can
change extremely rapidly, and although structural ana-
lyses and early functional studies have suggested that
RLR-RNA interactions are not strongly affected by
sequence variation [52, 84], changes in viral RNA se-
quences might impact RLR immune signaling under
some circumstances [105–107]. Many viruses bio-
chemically ‘hide’ their RNAs to avoid host detection
[108–110], and viruses are known to antagonize various
aspects of the RLR system [111–113]. Unfortunately, we
know almost nothing about the ecologically important
viruses that may have plagued ancient animals, so deter-
mining the precise native ligands that may have driven
the evolution of RLRs is not possible. At this point, we
must content ourselves with characterizing how interac-
tions between RLRs and model biochemical ligands
evolved. Although these studies can shed light on the
structural and molecular-functional evolution of im-
mune receptors, it is not possible to confidently infer
specific properties of ancient viruses based on limited
analyses of receptor-RNA interactions.
While our study has focused on the evolution of

receptor-ligand binding affinity, factors other than ligand
affinity affect how receptors ultimately function in im-
mune signaling, including how receptors interact with
themselves [114–117] with cofactors [48, 118, 119] and
with signaling adaptors [47, 48, 120]. Making sense of
the functional evolution of RLRs and other immune
receptors will ultimately require considering the full

breadth of molecular interactions determining a recep-
tor’s cellular function.
While speculative, we feel our results may reflect gen-

eral differences in the evolutionary dynamics of immune
receptors, compared to those of proteins involved in
more stable biological processes. Because the functional
requirements of pathogen recognition are likely to
change rapidly, immune receptors may exist in constant
non-equilibrium, unable to optimize a specific functional
repertoire. In contrast, proteins evolving toward a more
stable evolutionary goal have more time to optimize
specific functions. This general model would predict that
immune receptors should exhibit less epistasis among
substitutions overall, and extant receptors should be less
optimally tuned to their functions, compared to slow-
evolving counterparts. Determining the validity of this
general model will require characterizing the molecular-
functional evolution of RLRs across a broader range of
ligands and over a larger slice of evolutionary history.
Testing generalizability will also require mechanistic in-
vestigations of the evolution of other immune receptors.
Characterizing a large number of receptor-ligand sys-
tems is expected to provide important clues about the
specific aspects of pathogen-receptor interactions of pri-
mary importance in evolutionary history, advancing our
understanding of host-pathogen interactions in particu-
lar as well as molecular-evolutionary theory in general.

Methods
Sequence data and gene family phylogeny
RIG-like receptor (RLR) protein sequences were re-
trieved from the NCBI Reference Sequence database
[121] using DELTA-BLAST [122] with an e-value cutoff
of 1.0e−5. We used the RNA recognition domains (RDs)
from human RIG-I, MDA5, LGP2 and our previously re-
constructed ancestral RLR RD [46] as BLAST queries,
and merged the results into a single RLR dataset. We
confirmed the presence of a DEAD/Helicase domain in
each sequence by RPS-BLAST against the NCBI Con-
served Domain Database [123], using an e-value cutoff
of 0.01.
Sequences were aligned using PROBALIGN v1.4

(default parameters [124]) and MAFFT v7.158b (einsi
parameters [125]). Initial maximum likelihood trees were
built from each alignment using FastTree v2.1.7 (default
parameters [126]) and further refined using the “BEST”
topology search heuristic in PhyML v20140606 [127],
with the best-fit evolutionary model inferred by AIC
using ProtTest v3.4 [128]. We inferred SH-like aLRT
clade support using PhyML [129]. Ancestral sequences
were inferred by marginal maximum likelihood recon-
struction using RAxML v8.0.25 [130], with insertions
and deletions reconstructed by maximum likelihood
from the presence-absence alignment matrix. Support
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for each ancestral state was assessed by calculating pos-
terior probabilities [131], and ancestral sequences were
compared to our previously reconstructed ancestral
RLRs [46].
Protein-coding adaptation was assessed using the

branch-sites model implemented in PAML v4.7 [132,
133], which uses a mixture distribution to model a com-
bination of negatively-selected, neutral and positively-
selected positions in the protein sequence [66]. For each
branch on the phylogeny, we tested the hypothesis that
some sites experienced adaptive protein-coding substitu-
tions against the null hypothesis of neutral evolution
using a likelihood ratio test. P values were calculated
using the χ2 distribution [66], and we used a Bonferroni
correction for multiple testing.

Structural modeling and molecular dynamics
We constructed structural models of RLR RDs using
MODELLER v9.13 [134]. The structures of human RIG1
RD bound to blunt-ended double-stranded RNA (PDB
ID: 3OG8 [51]) and 5′-triphosphate dsRNA (PDB ID:
3LRN [84]) were used as templates. We constructed 100
preliminary models of each RD-RNA and scored each
model using the MODELLER objective function
(molpdf), DOPE score and DOPEHR [135]. Each score
was re-scaled to units of standard-deviation across the
100 models [136], and we selected the best structural
model as that with the best average of re-scaled molpdf,
DOPE and DOPEHR scores. Spatial and thermodynamic
quality scores were assigned to each structural model
using QMean [137], DFIRE [138] and Procheck [139].
Structural models of ancestral RLR helicase + pincer +
RD domains bound to blunt dsRNA (PDB ID: 5F9F) and
5′ppp dsRNA (PDB ID: 5F9H) were constructed using
the same approach [52].
Structural models were processed for electrostatic sur-

face visualization using PROPKA v3.1 and PDB2PQR
v1.7 to determine residue side-chain pKas, optimize the
structure for favorable hydrogen bonding and calculate
charge and radius parameters from amber electrostatic
force fields [140, 141]. These calculations were per-
formed using protein-RNA complexes to ensure proper
side-chain orientation and protonation in the presence
of ligand. For visualization, we estimated electrostatic
surface potentials in the absence of RNA ligands using
APBS v1.4.1 [142] and projected them onto the protein’s
molecular surface.
For each RLR structure bound to each RNA type, we

ran 4 replicate molecular dynamics simulations using
GROMACS v4.6.5 [143]. Dynamics simulations of RLR
RDs bound to RNA contained between 22,056 and
64,408 water molecules, 43–146 sodium and 44–120
chloride ions. Simulations of helicase + pincer + RD do-
mains bound to RNA contained 32,906–35,871 waters,

67–83 sodium ions and 68–73 chloride ions. We used
the amber99sb-ildn force field [144] and the tip3p water
model. Initial dynamics topologies were generated for
each RLR-RNA complex using the GROMACS pdb2gmx
algorithm with default parameters. Topologies were re-
laxed into simulated solvent at pH = 7 using a 50,000-
step steepest-descent energy minimization. The system
was then brought to 300K using a 50-ps dynamics simu-
lation under positional restraints, followed by pressure
stabilization for an additional 50 ps. Unconstrained mo-
lecular dynamics were run for 11 ns using a 0.002-ps
integration time step, with the system sampled every
5 ps. Simulations were run using Particle-Mesh Ewald
electrostatics with cubic interpolation and grid spacing
of 0.12 nm. Van der Waals forces were calculated using
a cutoff of 1.0 nm. We used Nose-Hoover temperature
coupling, with protein, RNA and solvent systems
coupled separately and the period of temperature fluctu-
ations set to 0.1 ps. Pressure coupling was applied using
the Parrinello-Rahman approach, with a fluctuation
period of 2.0 ps. Non-bonded cutoffs were treated using
buffered Verlet lists. We discarded the first 1 ns of each
simulation.
From each dynamics simulation, we inferred the cen-

tral structure by calculating pairwise root mean square
deviations (RMSDs) between every pair of simulation
samples and identifying the sampled structure most
equidistant to the others, using the g_cluster function in
GROMACS. We measured the root mean square fluctu-
ation (RMSF) of each residue’s side-chain and backbone
over the dynamics simulation. We additionally calculated
a number of biochemical properties from each sample
taken from each molecular dynamics simulation. Sec-
ondary structure was calculated using DSSP v2.2.1 [145],
and we report the proportion of samples from which
each residue was a member of a helix, strand or loop.
We estimated a consensus secondary structure over the
course of each simulation by assigning each residue to
helix or strand if it was assigned to that secondary struc-
ture by DSSP in >50 % of samples; we required at least 3
consecutive residues to infer consensus helices and
strands. We inferred hydrogen bonds using a radius cut-
off of 0.3 nm and an angle cutoff of 20 ° and report, for
each residue, the proportion of simulation samples from
which that residue forms a hydrogen bond with the
RNA molecule or the 5′ppp moiety. We calculated the
minimum distance between each residue and the RNA
molecule over the course of each dynamics simulation.
We considered a residue as potentially contributing
to RNA contact if its average minimum distance
across the entire dynamics simulation was significantly <4
angstroms.
Significance of differences in each biochemical prop-

erty inferred by structural dynamics was assessed using
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the 2-tailed, 2-sample independent t-test, assuming un-
equal variances [146]. We corrected for multiple testing
using a false discovery rate correction [147].

Molecular binding kinetics
We generated GC-rich 29-base-pair RNA molecules in
vitro using T7 RNA reverse transcriptase and synthetic
dsDNA as template (3′-GAAAGAGGUGCGGAAAGAG
GUAGAGGAGG-5′). Complementary purified single-
stranded RNAs were annealed to produce double-
stranded RNA by combining at 1:1 ratio, heating to 95 °C
for 5 min and then cooling to 25 °C. Blunt-ended dsRNA
was produced from 5′-triphosphate RNA by exposure to
alkaline phosphatase or synthesized de novo by IDT (Iowa,
USA). The 3′ end of one RNA strand was biotinylated to
facilitate kinetics assays using the Pierce™ 3′ End RNA
Biotinylation Kit (Thermo).
RLR RDs were expressed in E. coli Rosetta™

2(DE3)pLysS cells using pET-22b(+) constructs, which
were verified by Sanger sequencing. Proteins were puri-
fied by His-affinity purification and visualized by SDS-
page stained with 1 % coomassie. Protein concentrations
were measured using a linear-transformed Bradford
assay [148].
We measured RD-RNA binding using a label-free in

vitro kinetics assay at pH = 7 [149]. Biotinylated RNA
molecules were bound to a series of 8 streptavidin
probes for 15 min, until saturation was observed. Probes
were washed and then exposed to 25 μg/ml biocytin to
bind any remaining free streptavidin. The probes were
then exposed in parallel to RDs at various concentra-
tions in 1 × Kinetics Buffer (ForteBio) for 30 min,
followed by dissociation in Kinetics Buffer for an add-
itional 30 min. Molecular binding at each concentration
over time was measured as the change in laser wave-
length when reflected through the probe in solution,
sampled every 3 ms.
For each replicate experiment, we estimated the RD

concentration at which ½-maximal steady-state RNA
binding was achieved (Kd) by fitting a one-site binding
curve to the steady-state laser wavelengths measured
across RD concentrations at saturation (60 min), using
nonlinear regression. We additionally fit 1-site associ-
ation/dissociation curves to the full time-course data in
order to estimate the initial rates of RNA binding across
RD concentrations and used these rates to calculate the
RD concentration at which the ½-maximal RNA-binding
rate was achieved (Km). Kds and Kms were negative-log
transformed to facilitate visualization, and standard
errors across 3 experimental replicates were calcu-
lated. We calculated the statistical significance of
differences between Kds and Kms using the 2-tailed,
2-sample independent t-test, assuming unequal vari-
ances [146].
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