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Abstract

Background: The identification, description and understanding of protein-protein networks are important in cell biology
and medicine, especially for the study of system biology where the focus concerns the interaction of biomolecules. Hubs
and bottlenecks refer to the important proteins of a protein interaction network. Until now, very little attention has been

paid to differentiate these two protein groups.

Results: By integrating human protein-protein interaction networks and human genome-wide variations across
populations, we described the differences between hubs and bottlenecks in this study. Our findings showed
that similar to interspecies, hubs and bottlenecks changed significantly more slowly than non-hubs and non-
bottlenecks. To distinguish hubs from bottlenecks, we extracted their special members: hub-non-bottlenecks

and non-hub-bottlenecks. The differences between these two groups represent what is between hubs and
bottlenecks. We found that the variation rate of hubs was significantly lower than that of bottlenecks. In

addition, we verified that stronger constraint is exerted on hubs than on bottlenecks. We further observed
fewer non-synonymous sites on the domains of hubs than on those of bottlenecks and different molecular

functions between them.

Conclusions: Based on these results, we conclude that in recent human history, different variation patterns
exist in hubs and bottlenecks in protein interaction networks. By revealing the difference between hubs and
bottlenecks, our results might provide further insights in the relationship between evolution and biological

structure.
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Background

Proteins rarely function in isolation but rather interact
with other genes or proteins to form a complex network
to carry out certain biological functions. Protein-protein
interaction (PPI) networks are thus crucial for the
understanding of protein functions [1], protein evolution
[2] and related diseases [3]. In the past decade, re-
searchers have identified many PPI networks across dif-
ferent species [4—8]. These networks were reported to
be scale-free [9-11], i.e., the degree of a node follows the
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power law distribution. The majority of nodes links to
only few other nodes; very few nodes link to a large
number of other nodes.

There are many measures to describe the topology of
a network. The degree of a node, namely, the number of
nodes to which the node connects, is a basic local index.
In a network, nodes of high degree are called hubs, on
which several studies have been conducted. Earlier stud-
ies mainly focused on the correlation between node de-
gree and functional importance because hubs are
hypothesized to be more biologically important. They
found that hubs are encoded by essential genes [12, 13].
The relationship between evolutionary conversion and
node degree was then investigated. The negative correl-
ation between evolutionary rate and node degree has
been reported [14-20].
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Another most elementary global network topology
measure is betweenness, the frequency with which a
node lies on the shortest path between other nodes [21].
Proteins with a high level of betweenness are called bot-
tlenecks. Several studies have been conducted on bottle-
necks. For example, it was found that bottlenecks tend
to be encoded by essential genes [13, 22] and that a
negative correlation exists between evolutionary rate and
betweenness [18, 19]. In addition, proteins of high be-
tweenness are more likely to be of older evolutionary
age than those of low betweenness [23].

The relationship between drug target and degree, as
well as the relationship between drug target and be-
tweenness was investigated. It was found that proteins
known to be a drug target have higher degree and/or be-
tweenness values than an average protein [24]. When
comparing hubs with bottlenecks at the level of protein
evolutionary age in a yeast PPI network, hubs were
found to depend more on the protein evolutionary age
than bottlenecks do [25].

The relationship between degree and betweenness was
discussed. Previous research studies found a positive
relation between the degree of a protein and its between-
ness [22, 26]. This is to say that overlapping proteins may
exist between hubs and bottlenecks. Once protein redun-
dancy is accepted, then several questions can be ad-
dressed. For instance, how many overlapping proteins are
there, and do differences exist between hubs and bottle-
necks? Additionally, what are the variation patterns of
hubs and bottlenecks, and are there any differences be-
tween them? With the development of sequencing tech-
nology, more human genome sequences are available that
provide us with the opportunity to analyse them. To ad-
dress these questions, we compared hubs and bottlenecks
using genome-wide variation amongst human populations
and four protein-protein interaction datasets. Because cer-
tain proteins overlap between them, we think that only
the difference between their own special proteins can rep-
resent their differences. Therefore, we retained hub-non-
bottleneck nodes and non-hub-bottleneck nodes and
compared them. In addition, we removed the influence of
incomplete network and the cut-off of node degrees/be-
tweenness. Furthermore, we attempted to determine
whether other factors affect our results. Taken together,
we conclude that different variation patterns exist between
hubs and bottlenecks in human protein interaction net-
work. Our result highlights the relationship between hubs
and bottlenecks in protein-protein networks and help in
understanding the evolution of proteins.

Results

Combined protein-protein interactions

To analyse a large number of PPIs, we first integrated
the existing PPIs. We extracted the physical PPIs from
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BioGRID [27], DIP [28], HPRD [29] and IntAct [30].
Protein IDs represented in each database were mapped
to Ensembl transcript IDs [31] using the common
idmapping files. There were 151,810 interactions among
14,617 proteins in BioGRID, 1595 interactions among
1514 proteins in DIP, 35,305 interactions among 9069
proteins in HPRD, and 3060 interactions among 2313
proteins in IntAct, respectively. After removing duplicate
interactions, we merged these four data sets. A total of
167,795 different physical interactions among 15,714
proteins were retained.

In this network, we examined the degree distribution,
p(k), which is the frequency of the proteins interacting
with k other proteins, and found that the distribution of
degree followed the power law distribution (R*=0.84)
(Additional file 1: Figure S1). This result indicated that
the network was a scale-free network, i.e., few proteins
interacting with many other proteins and many proteins
interacting with few other proteins, which was consist-
ent with previous studies [10, 11].

The negative correlation between the variation rate of a
protein and its degree or betweenness

Previous research has shown a negative correlation be-
tween the degree of a protein and its rate of variation
[14-20]. To determine whether such a correlation exists
in recent human history, we calculated the degree of
each protein using the R package and obtained the vari-
ation rate of proteins using PAML [32]. There was a
weak negative association between the variation rate and
degree of protein (Spearman’s p = —0.20, P < 2.2 x 107*9),
There are also reports of negative correlation between
the betweenness of a protein and its rate of variation
[18, 19]. To examine this relationship, the betweenness
of each protein was obtained using the R package. We
also found a weak negative correlation between the vari-
ation rate and betweenness (Spearman’s p =-0.14, P<
2.2x 107", This finding indicates that proteins with a
high degree or betweenness tend to change slowly,
which is in agreement with the previously mentioned in-
terspecies studies.

We further compared the variation rates of hubs with
those of non-hubs. As illustrated in Fig. 1, the hubs
changed significantly more slowly than non-hubs
(0.00860 vs 0.01180, Mann-Whitney U test: p <4.19 x 10
~119) For the bottlenecks and non-bottlenecks, the pat-
tern was similar (Fig. 1, 0.0092 vs 0.0116, Mann-
Whitney U test: p < 5.76 x 10°%%).

Hubs tending to be bottlenecks

Previous studies have identified a positive correlation be-
tween the degree of a protein and its betweenness [22, 26].
In this network, we also found such a significant positive
correlation (Spearman’s p = 0.76, p < 2.2 x 107*°). However,
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Fig. 1 Distribution of the variation rate of proteins in human protein-protein networks
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it was unclear how many overlapping nodes there were Slower variation of hubs than that of bottlenecks

between hubs and bottlenecks. To address this, we identi-  There are very large overlaps of proteins between hubs
fied hubs and bottlenecks using the top 20% of the corre-  and bottlenecks. Therefore, it is necessary to distinguish
sponding distribution. We found that hubs tend to be between the hubs and bottlenecks, otherwise we would
bottlenecks (Fig. 2). not know whether proteins are hubs or bottlenecks
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Fig. 2 Venn diagram of the number of hubs and bottlenecks
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when the proteins are important. We further portioned
them into three categories as shown in a previous study
[22]: hub-bottlenecks, hub-non-bottlenecks, and non-
hub-bottlenecks. To distinguish between hubs and bot-
tlenecks, we removed the overlapping nodes that are
hub-bottlenecks and retained their own special nodes:
hub-non-bottlenecks and non-hub-bottlenecks. These
two sets of proteins would help us better identify the dif-
ferences between the hubs and bottlenecks. We compared
the variation rate between them. As described in Fig. 3,
the variation rate of hub-non-bottleneck nodes is signifi-
cantly lower than that of non-hub-bottleneck nodes
(0.00950 vs 0.01150, Mann-Whitney U test: p <3.57 x 10
~19). Additionally, we used the protein-coding genetic vari-
ations in 60,706 humans [33] to redo our analysis, and the
result was similar (0.1398 vs 0.1511, Mann-Whitney U
test: p < 6.45 x 10~%; Additional file 2: Figure S2).

Although we integrated human physical protein-protein
interactions from four public databases, the number of in-
teractions is likely to be much larger than the current data
suggest [24]. To remove the potential influence of an in-
complete network, we first randomly selected 80% of the
nodes from the human PPIs and reconstructed the PPI
network. This randomization process was carried out
1000 times, and the analysis repeated for 1000
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Fig. 3 Distribution of the variation rate of hub-non-bottlenecks
and non-hub-bottlenecks
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randomized networks. The different variation patterns be-
tween hubs and bottlenecks were all observed. We then
randomly selected 80% of the edges from the human PPIs
and repeated the randomization process as the random-
ized nodes and the different variation patterns between
hubs and bottlenecks were still observed. This process
suggested that the incompleteness of the PPI network
might not have influenced our results.

Protein evolution is a complex process. In this process,
many factors might affect the variation rate of proteins,
such as the essentiality, expression breadth, expression
levels and topologies of the network [34, 35]. We found
different variation rates between hubs and bottlenecks.
We then addressed whether differences exist between
hub-non-bottlenecks and non-hub-bottlenecks when the
above factors are taken into account. First, we estimated
the difference for the enrichment of essential genes and
found that there was no significant difference in the en-
richment of essential genes between hub-non-
bottlenecks and non-hub-bottlenecks (Fisher’s exact test:
p=092, p=045). We then analysed the expression
breadth and the expression levels of these genes. For the
expression width, both of their medians were 15. For the
expression levels, there were a significant difference be-
tween hubs and bottlenecks (4.15 vs 1.94, Mann-
Whitney U test: p<2.66x 107'%). Using K-means, we
clustered the hubs and bottlenecks by expression levels
and focused on one subgroup where there were 846
hub-non-bottlenecks and 1038 non-hub-bottlenecks. No
significant difference was observed between the expres-
sion level of hubs and that of bottlenecks (2.61 vs 1.94,
Mann-Whitney U test: p = 0.27). Furthermore, we found
that the variation rate between them differed (0.009800
vs 0.01160, Mann-Whitney U test: p < 6.22 x 1075, Add-
itional file 3: Figure S3). These analyses implied that the
difference between hubs and bottlenecks remained when
excluding the effects of essentiality, expression breadth
and expression levels. These results demonstrated that
hub-non-bottlenecks change significantly more slowly
than no-hub-bottlenecks.

Stronger constraint on the hubs than on the bottlenecks

Based upon the above analysis, we found only the differ-
ent variation rate between hubs and bottlenecks. How-
ever, we do not know whether there is different
constraint on them. To answer this question, we used
the likelihood-based method [36] to infer the gamma
distribution of fitness effects of hub-non-bottles and
non-hub-bottlenecks. The advantage of this method is
that it can control for demographic effects. Because
some mutations at CpG sites are much more frequent
than at other sites, we excluded the CpG-related SNPs
to control the effect of these SNPs. The sharp parame-
ters of hub-non-bottlenecks and non-hub-bottlenecks



Pang et al. BVIC Evolutionary Biology (2016) 16:260

were 8.87e-2 (6.87e-2, 1.47e-1) and 7.57e-2 (6.25e-2,
1.06e-1), respectively. The mean strength of selection
acting on hub-non-bottlenecks and non-hub-bottlenecks
were 1.62e+5 (8.18e+2, 7.63e+5) and 1.23e+5 (3.02e +3,
4.72e+5), respectively. The proportion of mutations fall-
ing within these four categories of S values reflects dif-
ferent strengths of selection on both hub-non-
bottlenecks and non-hub-bottlenecks (Fig. 4). We found
that hub-non-bottlenecks exhibited a lower fraction of
mutations with |S| <1 (34.9%) than that of non-hub-
bottlenecks (39.5%). This result indicated that the
strength of selection on the hub-non-bottlenecks was
stronger than that on the non-hub-bottlenecks.

Fewer non-synonymous sites on domains of hubs than on
those of bottlenecks

We next estimated the non-synonymous sites on domains
of hubs. We found that there were significantly fewer non-
synonymous SNPs in the domains of hub-non-bottlenecks
than in random proteins (p-value =0.02, see Methods).
However, for the non-hub-bottlenecks, we did not observe
a similar pattern. We further compared the non-
synonymous SNPs in domains of hub-non-bottlenecks
with those of non-hub-bottlenecks. There were signifi-
cantly fewer non-synonymous SNPs in the domains of
hub-non-bottlenecks than those of non-hub-bottlenecks
(Fisher’s exact test: p=0.83, p-value<2.2x107'%). We
next analysed the functions of hub-non-bottlenecks and
non-hub-bottlenecks. PANTHER tool (version 10.0) on
the web server (http://geneontology.org) was used to ana-
lyse GO molecular function [37]. The top 5 significantly
overrepresented GO terms, which must be located in
more than 3 layers in the structure of GO, are listed in
Tables 1 and 2 for hub-non-bottlenecks and non-hub-
bottlenecks, respectively. As shown in these tables, hub-
non-bottlenecks may participate in nucleic acid binding,
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whereas non-hub-bottlenecks may be involved in signal
transduction.

Discussion

In this study, we identified different variation patterns
between hubs and bottlenecks based on four human
protein-protein interaction databases and the genetic
variation of 1092 human genomes. Based on the hypoth-
esis that a protein will change more slowly over time if it
is an important protein, we can infer from our analysis
that hubs may be more important than bottlenecks in
human protein-protein interaction network. It is antici-
pated that our results will help to further understand
protein evolution and highlight the relationship between
hubs and bottlenecks.

Our results were based on protein-protein interaction
networks and genome-scale variation, such that the ana-
lysis would be affected by both their quality and cover-
age. To construct a comprehensive protein-protein
interaction network, we used four databases: BioGRID,
DIP, HPRD, and IntAct. However, BioGRID was heavily
over-represented in the final dataset. This may bias the
results by any latent factor associated with BioGRID. We
repeated the calculation on the HPRD dataset. It exhib-
ited similar results (0.00900 vs 0.01020, Mann-Whitney
U test: p <7.31 x 10°% Additional file 4: Figure S4).

In this study, both the hubs and bottlenecks are in the
top 20% of the corresponding distribution. To remove
the influence of the cut-off of hubs and bottlenecks, we
varied the cut-off from 5 to 40% as previously reported
[22] and found that the cut-off almost had no significant
impact on our results (Additional file 5: Figure S5).

We found that hub-non-bottlenecks may participate in
nucleic acid binding. One example is Sin3A-associated
protein, 18 kDa (SAP18, ENST00000382533), which
plays a key role in the regulation of eukaryotic gene

B Hub-non-bottlenecks

E Non-hub-bottlenecks

Proportion

around the estimated proportions

0-1 1-10
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Fig. 4 Distribution of the strength of selection on non-synonymous SNPs in hub-non-bottlenecks and non-hub-bottlenecks. Error bars denote SE
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Table 1 Molecular function enrichment for hub-non-
bottlenecks

GO term P-value

Nucleic acid binding 4.78e-79
Organic cyclic compound binding 5.62e-74
RNA binding 3.03e-68
Poly(A) RNA binding 3.00e-64
DNA binding 1.89%-11

expression. SAP18 is a binding partner of mammalian
tribbles homologue 1 (a human locus, TRIB1), which has
been shown to significantly impact plasma lipid. The
knockdown of the Sapl8 in mouse liver decreased
plasma lipid levels [38]. This example showed that hub-
non-bottlenecks play an important function through nu-
cleic binding.

Conclusions

We used an integrated protein-protein network to evalu-
ate the difference between hubs and bottlenecks at the
level of mutation in recent human history. We found
different evolution patterns between hubs and bottle-
necks, which showed no differences in the enrichment
of essential genes, expression breadth, and expression
levels between hubs and bottlenecks. Although we can-
not conclude that the topology of the network is the key
factor in the difference between hubs and bottlenecks,
we did demonstrate the relationship between the vari-
ation rate and topology of the human protein-protein
network. Based on our results, we believe that the
bottlenecks are not as important for a general under-
standing and may be mainly data driven in the protein-
protein network as previously argued by Barabasi [39].

Methods

Data sources

In this study, we mainly used six types of data: genome
sequence, genome annotation, genome-wide variation
from human populations, protein-protein interactions,
essential genes, and RNA-Seq reads.

Table 2 Molecular function enrichment for non-hub-
bottlenecks

GO term P-value
Receptor binding 7.78e-15
Signalling receptor activity 1.03e-14
Transmembrane signalling 1.87e-13
receptor activity

G-protein coupled receptor 2.38e-07
activity

Cell adhesion molecule binding 5.15e-06
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The human genome sequence was based on the February
2009 Homo sapiens assembly, GRCh37, downloaded from
Ensembl [31] (http://asia.ensembl.org/index.html). The
models of the protein-coding genes were retrieved from
version 16 (April, 2013) of the GENCODE project [40],
whose aim was to annotate all evidence-based gene features
in the human genome. Genome-wide variations were from
two datasets: the genome-wide set of genetic variations
among 1092 human genomes [41] downloaded from the
1000 Genomes Project (http://www.internationalgen-
ome.org), and the protein-coding genetic variation in
60,706 humans [33] downloaded from Exome Aggregation
Consortium (ftp://ftp.broadinstitute.org/pub/ExAC_re-
lease/current/, release 0.3.1).

The protein-protein interactions were from four data-
bases: BioGRID (BIOGRID-ORGANISM-Homo_sa-
piens-3.3.122.tab2.txt) [27], DIP (Hsapi20150101.txt)
[28], HPRD (BINARY_PROTEIN_PROTEIN_INTERAC-
TIONS.txt) [29], and IntAct (intact.txt) [30] (Table 3).
For BioGRID, we extracted only the interactions that
met three conditions: (1) “Organism Interactor A” is
“9606”, (2) “Organism Interactor B” is “9606”, and (3)
“Experimental System Type” is “physical”. For DIP, we
collected the following interactions: (1) “Taxid interactor
A” is “taxid:9606(Homo sapiens)”, (2) “Taxid interactor
B’ is “taxid:9606(Homo sapiens)” and (3) “Interaction
type” is “physical interaction” or “direct interaction”. For
HPRD, we filtered the self-interactions. For IntAct, we
retrained the following interactions: “Type(s) interactor
A/B” is “protein” and “Interaction type” is “direct inter-
action”. We then compiled the non-redundant human
protein-protein interactions as the union interactions.
While identifying non-redundant interactions, we con-
verted the protein IDs from each database to
Ensembl_TRS [31] using the idmapping file available at
ftp://ftp.uniprot.org/pub/databases/uniprot/current_re-
lease/knowledgebase/idmapping/idmapping.dat.gz.

A list of essential genes was obtained from DEG 11.0
[42] (http://www.essentialgene.org), which collects es-
sential genes from the literature [43].

Definition of hubs and bottlenecks

We defined hubs as the proteins that are in the top 20%
of the degree distribution. We also defined bottlenecks
as the proteins that are in the top 20% of the between-
ness distribution. The degree and betweenness of a pro-
tein in human protein-protein interactions were
calculated using the R package igraph [44]. We used the
command “degree(graph)” for degree, and “between-
ness(graph,directed = FALSE)” for betweenness.

Variation rate of proteins
We used the density of non-synonymous SNPs (dN),
which is the number of non-synonymous substitution
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Table 3 List of protein-protein interaction databases used in this study

Database name Number of interactors

Number of interactions

Release date/version Uniform resource locator

BioGrid 19,128 269,778
DIP 4298 6464
HPRD 9617 39,240
IntAct 83,772 523,070

March, 2015, Release 3.3.122 http://thebiogrid.org

January 1, 2015 http://dip.doe-mbi.ucla.edu/
dip/Main.cgi

April 13, 2010, Release 9 http://www.hprd.org

February 23, 2015 http://www.ebi.ac.uk/intact/

per non-synonymous site, to measure the variation rate
of a protein. For human genes, sequences that change
over time can be identified according to the number of
SNPs present. The dN values of human genes were then
estimated by applying PAML (version 4.8) based likeli-
hood method [32] on the two sequences.

Inference of the strength of selection acting on hub-non-
bottlenecks and non-hub-bottlenecks

The program DoFE v3.0 proposed by Eyre-Walker et al.
[36] was implemented to infer the strength of selection.
The software can be downloaded from http://www lifes-
ci.sussex.ac.uk/home/Adam_Eyre-Walker/Website/Soft-
ware.html. Some mutations at CpG sites occur much
more frequently than at other sites. To control for the
effect of CpG-related SNPs, we excluded all CpG-related
SNPs as previously described [45].

Randomization process

To test the significance of the percentage of non-
synonymous SNPs on the domains of hubs and bottle-
necks (called observed percentage), we followed a
randomization method. We produced 10,000 randomized
datasets each containing K proteins, where K is the num-
ber of hub-non-bottlenecks or non-hub-bottlenecks. For
each randomized dataset, we calculated the percentage of
non-synonymous SNPs on the domains of K proteins. The
proportion of the randomized datasets with a lower per-
centage of non-synonymous SNPs on the domains of K
proteins compared to the observed percentage in the
10,000 randomized datasets is a direct estimation of the p-
value that can be attached to the hypothesis that non-
synonymous SNPs on domains have a similar percentage.

Protein domain identification

We downloaded pfam_scan.pl from Pfam (http://pfam.x-
fam.org) [46]. The Pfam database is a large collection of
protein families, each represented by multiple sequence
alignments and hidden Markov models [46]. In
Pfam28.0, there are 16,230 protein families. We executed
the program with default parameters.

Processing RNA-Seq reads
To estimate the expression level and width of genes as
defined below, we downloaded paired-end RNA-Seq

reads from 16 different tissues. These data are available
at ftp.sra.ebi.ac.uk/voll/fastq/ERR030/ (ERR030872~ERR
0887). Reads were assessed for quality and trimmed
using Trimmomatic version 0.35 [47]. Reads smaller
than 25 bp were excluded. We excluded reads from brain
tissue because less than 50% of reads were retained.
Therefore, we analysed only 15 tissues. Trimmed reads
were mapped to the human genome using Tophat (ver-
sion 2.1.0) [48]. Reads aligned to the human genome were
counted and quantified by FPKM using Cufflinks version
2.21 [49]. We used FPKM as the expression level of a pro-
tein. We used the number of tissues, where the FPKM
was not 0, as the expression width of a protein. To analyse
the difference of expression levels, the FPKM:s of different
tissues were normalized using Cuffnorm [49].

Statistical analyses

Spearman’s rank test was applied to test the correlation
of two datasets. Mann-Whitney U test was used to test
the difference of dN values between two groups of pro-
teins. Fisher’s exact test was implemented to test the dif-
ference of SNPs on domains. K-means was performed to
cluster proteins based on expression levels. All statistical
tests were performed using the R statistical package.

Additional files

Additional file 1: Figure S1. Degree distribution of human integrated
protein—protein interaction network. Degree (k), number of links connected
to each protein; P(k), probability that a node has k links. (TIF 525 kb)

Additional file 2: Figure S2. Distribution of the variation rate of
hub-non-bottlenecks and non-hub-bottlenecks using 60,706 humans
dataset. (TIF 1206 kb)

Additional file 3: Figure S3. Distribution of the variation rate of
hub-non-bottlenecks and non-hub-bottlenecks excluding difference of
expression levels. (TIF 1138 kb)

Additional file 4: Figure S4. Distribution of the variation rate of
hub-non-bottlenecks and non-hub-bottlenecks using HPRD
interactions. (TIF 1311 kb)

Additional file 5: Figure S5. Distribution of the variation rate of hub-
non-bottlenecks and non-hub-bottlenecks by using different cut-offs for
hubs and bottlenecks. a) The cut-off is 1%. b) The cut-off is 5%. c) The
cut-off is 10%. d) The cut-off is 15%. e) The cut-off is 30%. f) The cut-off is
40%. (TIF 2085 kb)
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