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Abstract

Background: Understanding the genetic and evolutionary mechanisms of speciation genes in sexually reproducing
organisms would provide important insights into mammalian reproduction and fitness. PRDM9, a widely known
speciation gene, has recently gained attention for its important role in meiotic recombination and hybrid incompatibility.
Despite the fact that PRDM9 is a key regulator of recombination and plays a dominant role in hybrid incompatibility, little
is known about the underlying genetic and evolutionary mechanisms that generated multiple copies of PRDM9 in many
metazoan lineages.

Results: The present study reports (1) evidence of ruminant-specific multiple gene duplication events, which
likely have had occurred after the ancestral ruminant population diverged from its most recent common ancestor and
before the ruminant speciation events, (2) presence of three copies of PRDM9, one copy (lineages I) in chromosome 1
(chr1) and two copies (lineages Il & Ill) in chromosome X (chrX), thus indicating the possibility of ancient inter- and
intra-chromosomal unequal crossing over and gene conversion events, (3) while lineages | and Il are characterized by
the presence of variable tandemly repeated C2H2 zinc finger (ZF) arrays, lineage Il lost these arrays, and (4) C2H2 ZFs
of lineages | and I, particularly the amino acid residues located at positions —1, 3, and 6 have evolved under strong
positive selection.

Conclusions: Our results demonstrated two gene duplication events of PRDM9 in ruminants: an inter-chromosomal
duplication that occurred between chr1 and chrX, and an intra-chromosomal X-linked duplication, which resulted in two
additional copies of PRDM9 in ruminants. The observation of such duplication between chrX and chr1 is rare and may
possibly have happened due to unequal crossing-over millions of years ago when sex chromosomes were independently
derived from a pair of ancestral autosomes. Two copies (lineages | & Il) are characterized by the presence of variable sized
tandem-repeated C2H2 ZFs and evolved under strong positive selection and concerted evolution, supporting the notion
of well-established Red Queen hypothesis. Collectively, gene duplication, concerted evolution, and positive selection are
the likely driving forces for the expansion of ruminant PRDM9 sub-family.
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Background

Ever since the theory of genetic incompatibility (Bateson-
Dobzhansky-Muller Model) was independently proposed
by three eminent evolutionary biologists [1-3], re-
searchers across the disciplines have been devoted to char-
acterizing the evolutionary impacts of reproduction-
associated genes on speciation and species diversity. Un-
derstanding the molecular diversity of speciation genes
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would unravel the underlying mechanisms by which spe-
cies diversity drives speciation and the latitudinal gradient
of taxonomic groups as species diversity decreases with
latitude [4, 5]. Further, in-depth understanding of the gen-
etic and evolutionary mechanisms of speciation genes
would not only provide important insights into an organ-
ism’s fitness and/or reproduction but also promote con-
servation of threatened mammalian species through
genetic re-engineering, a technique that has recently been
used to reverse hybrid sterility in mice by editing the zinc
fingers (ZFs) of a widely known speciation gene, PRDM9
[6]. This landmark experiment further signified the
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important role of PRDM9 in fertility and reproductive
compatibility [6]. Nevertheless, the reports of genome-wide
non-random distributions of DNA binding motifs and the
corresponding clustering of meiotic recombination hot-
spots, together with the Red Queen model of evolution of
these DNA-binding motifs provide convincing evidence of
the dominant role of PRDM9 in metazoan speciation [7—
25]. Red Queen Hypothesis, which is based on the meta-
phors in Lewis Carroll's “Through the Looking Glass” [26],
was first used by VanValen [27] to explain speciation dy-
namics and extinction of species. Since then this metaphor
has been widely used as the key hypothesis to test the con-
tinual adaptation of species in order to survive in the face
of competition and changing environment, including the
evolution of ZFs of PRDM9 by treating PRDM9 ZFs as
“species” and genome background as “environment” [16,
25]. Nevertheless, the absence of functional PRDM9 in ca-
nids [28-30] and presence of single copies of PRDM9 in
rodents but multiple copies (i.e, PRDM 7/9) in primates,
ruminants and other metazoan lineages [31-33] indicate an
interesting yet complex evolutionary history of the PRDM9
gene family.

PRDMY has been reported to play a dominant role in
meiotic recombination in a wide range of mammalian
groups [8-10, 13-18, 20, 21, 23, 34-37]. It is a member
of the PRDM gene family [33] and encodes a protein
with a KRAB, a SSXRD, a PR/SET histone H3(K4) tri-
methyl transferase domain and a DNA-binding domain
consisting of a variable-sized tandemly repeated array of
C2H2 ZFs at the C-terminal [18]. The C-terminal array
of the C2H2 ZFs domain possesses a DNA-binding func-
tion, shows a high diversity and fast evolutionary rate,
and hence is likely to have evolved extremely rapidly by
positive Darwinian selection [16, 21, 25, 38—40]. How-
ever, the N-terminal KRAB, SSXRD and SET domains
have evolved at a very slow rate [18], thus making it an
ideal genetic marker to trace the evolutionary history of
PRDM?Y in each metazoan lineage.

Despite the critical role of the PRDM gene family in
early development and reproduction [41] little is known
about the evolutionary history of these genes. Two re-
cent studies [31, 33] reported the evolution of PRDM
gene family and suggested that while primate PRDM9
has a higher similarity of gene structure and protein do-
main organization with the non-primate co-orthologs
and likely retains the features of the ancestral locus,
PRDM?7 appears to be primate-specific and may have
undergone major structural arrangements that decreased
the number of ZFs [31]. Vervoort et al. [33] reported
that PRDM7 and PRDM9 gene trees do not form separ-
ate monophyletic groups and these gene trees are highly
incongruent with the species tree, suggesting an unusual
evolution of these genes in primates. Further, those stud-
ies concluded that PRDM7/9 phylogenetic analysis may
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be unreliable for positioning the duplication events that
have occurred in the primate lineage [33]. Given such un-
usual evolutionary patterns of PRDM7/9, in particular a
non-monophyletic grouping of PRDM9 and PRDM?7 in
primates [31, 33], one might speculate that PRDM9 and
PRDM?7 have evolved independently in different metazoan
lineages. Therefore, it is unclear if these form monophy-
letic groups in other metazoan, and we might need to
revise the nomenclature of these gene copies.

Utilizing the N-terminal portion of the PRDM9 nu-
cleotide and protein sequences the objective of this
study is to investigate the origin and evolution of the
multiple copies of PRDMY in ruminants, to determine
the phylogenetic congruencies of gene trees from these
novel gene copies with the ruminant species tree, and to
assess the underlying genetic and evolutionary forces
that shaped the evolution of these gene copies in rumi-
nants. Furthermore, given the fact that each functional
domain of the PRDM9 gene is associated with different
functions [18], these functional domains are expected to
show different evolutionary trajectories. Thus, another
objective of this study is to unravel the different evolu-
tionary forces that shape the evolution of N-terminal
and that are responsible for a variable-sized tandem-
repeat array of C2H2 ZFs at the C-terminal in each
lineage. Finally, we propose a model that explains the
evolution of PRDM9 and its multiple copies in the
ruminant species.

Results

We first give an overview of the main results and then pro-
vide more detailed explorations in the following paragraphs.
The present study reports (1) evidence of ruminant-specific
multiple gene duplication events which likely have had oc-
curred before the ruminant speciation events and after the
ancestral ruminant population diverged from its most re-
cent common ancestor (Figs. 1 and 2), (2) the presence of
three copies of PRDM9 (Figs. 1 and 2), two copies (lineage
II and III; Fig. 1) in chromosome X (chrX) and one copy
(lineage I; Fig. 1) in chromosome 1 (chrl) with variable-
sized tandemly repeated arrays of C2H2 ZFs at the C-
terminal (Fig. 3) thus indicating the possibility of ancient
inter- and intra-chromosomal unequal crossing over and
gene conversion events, (3) while lineages I and II are char-
acterized by the presence of variable tandemly repeated
C2H2 ZFs arrays, lineage III lost these arrays (Fig. 3), (4)
C2H2 ZFs of lineages I and II, particularly amino acid resi-
dues located at positions -1, 3, and 6 have likely evolved
under strong positive selection (Fig. 4; Table 1) thus sup-
porting the notion of previously established Red Queen
hypothesis [16, 25], and finally, (5) together with the
evidence of positive selection (Fig. 4 Table 1) relatively
higher diversities at the nonsynonymous sites (Fig. 5) the
presence of identical arrays yet located at different
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Fig. 1 Phylogenetic trees inferred from PRDM genes. a Phylogenetic tree inferred from the SET domain amino acid sequences (alignment length:
203 aa) of the PRDM genes. b PRDM7/9 gene tree inferred from the SET domain (alignment length: 118 aa). ¢ Phylogenetic tree inferred from the
N-terminal portion of the amino acid sequences (alignment length: 351 aa) of PRDM9 depicting duplication and speciation events in ruminants. Bootstrap
values greater than 70 are shown at the base of the nodes. GenBank accession numbers and scientific names of the species are shown. SET
domain sequences representing all the 17 PRDM genes that were previously reported by Fumasoni et al. [31] were used as reference sequences. Asterisks
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Fig. 2 The rate of nonsynonymous (dN) to synonymous (dS) substitutions (w =;dN/dS) of different branches. The analysis was based on
the N-terminal portion of the coding nucleotide sequences of PRDM9. The free-ratio model (M1), which assumes independent w for each branch, is
the best-fit model (p =0.1) over the one-ratio model (MO) that assumes uniform w for all the branches in the phylogeny. w >1 are in bold

alignment positions in the sister-species (Fig. 3) as well as
the observation of variable length of binding motifs for
each ruminant species (Fig. 6) support both the concerted
evolution [16] and a cyclical back-and-forth evolution of
C2H2 ZFs arrays throughout the ruminant evolution span-
ning millions of years regardless of positive frequency-
dependent or negative frequency-dependent selection, a
dynamic evolutionary pattern that was recently proposed
for host-parasite co-evolution [42, 43].

To evaluate the phylogenetic positioning (Fig. 1a) and
clustering (Fig. 1b) of PRDM7 and PRDM9 in the
PRDM?7/9 gene tree and to assess the evolutionary origin
of multiple copies of PRDMY in ruminants (Fig. 1c) we
reconstructed the phylogenetic trees using the amino acid
sequences of the PR domains located at the N-terminal re-
gion (Fig. 1a b, and c). Consistent with previous studies
[31, 33], our analyses revealed that PRDM7/9 form unique
clusters (Fig. 1la) and that PRDM7 is primate-specific
(Fig. 1b). The N-terminal amino acid sequence-based
phylogeny showed that each PRDM9 copy (lineage I-III)
of ruminants formed a separate monophyletic group and
showed the evidence of two gene duplication events prior
to the ruminant speciation (Fig. 1c). Multiple paralog cop-
ies of PRDM9 in ruminants (e.g., genus: Bos, Capra, and
Ovis) support gene duplications before the speciation
events. Based on the previous reports [44—47], these three
species (genus: Bos, Capra, and Ovis) had a shared

ancestry. Bos diverged from the common ancestral popu-
lation approximately 26.8 (+8.7) million years ago (mya),
and the split between Capra and Ovis was estimated to be
approximately 10.83 (+4.17) mya. Concurrently, the pres-
ence of all three PRDM9 copies in each species provides
strong evidence of the gene duplication events before
ruminant speciation (i.e., 26.8 + 8.7 mya) (Fig. 2).

One of the striking observations is the presence of two
copies of PRDM9 (lineage II and III) on chrX (Fig. 1).
While one X-linked copy is characterized by the pres-
ence of variable-sized tandemly repeated C2H2 ZFs
(lineage II) the other copy completely lost its ZFs
(lineage III). Interestingly, the dN/dS ratio (w), for the
branch leading to X-linked lineages (i.e., II and III) was
estimated to be 10.12, indicating the evidence of positive
selection, a typical characteristic of novel gene copies
after a duplication event [48, 49]. We also found that the
C-terminal C2H2 ZFs of lineages I and II and the out-
group, especially the amino acid residues at the positions
-1, 3 and 6 that played crucial roles in DNA binding
during meiotic recombination [16], have likely evolved
under strong positive selection (Fig. 4). The tandemly
repeated arrangement of the ZFs and the presence of
identical ZFs (for example, in lineage I: A1, A7, A1l and
in lineage II: B7, B8, B10, B22, B26, and B29) showed
evidence of concerted evolution of C2H2 ZFs of both X-
linked (lineage II) and autosomal (lineages I) PRDM9



Padhi et al. BMC Evolutionary Biology (2017)17:79

Page 5 of 12

KRAB SSXRD SET ZnF
| 1

@ Gene duplication

@ Speciation (26.8 * 8.7mya)
XM 010800305 Bos taurus

Lineage I‘E XM 010800307 Bos taurus

XM 005701126 Capra hircus ZF=12
XM 012166124 Ovis aries musimon
XM 010821607 Bos taurus

XM 010799571 Bos taurus

XM 005895060 Bos mutus Lost ZFs
XM 013976867 Capra hircus

XM 012172886 Ovis aries musimon

XM 012107055 Ovis aries

XM 010800686 Bos taurus

GJ060462 Bos taurus

XM 010827492 Bos taurus

KJ020105 Bos taurus ZF=5

KJ020104 Bos grunniens ZF=5

XM 006071966 Bubalus bubalis

XM 013967328 Capra hircus

3 3 Tursiops truncatus
IM,—XM(’M 18593 Tursiops truncatus

I—XM 007172595 Bale

Number of Zinc Fingers (ZF) varies
from species to species.

N\

zr=3 [B28] B2 BB B4 [B31[BI0]GI8[BI6]

zr=13 [B27] B3 | B33[B10] B34[B10] B! I B1 [B32[BI0] BI9[BI7]

z¢=11 [ B6 [ B30] B9 [ B25] B13] B23 | B1s [N B20 | B21 |

[ s (524 N 524 TN 512 |

7zF=5 [AlL] A2 [ A7 [AlJAL]

zF=6 [AL] A2 [ a7 [AlLJAL] A5 ]

7zF=5 [[AL] A2 [ A7 [A1 [AlL]

A8 [ A6 [AI3] A4 [AlO

AllJAIL[A13] A3 [ A9

7zF=5 [A17]Al6]A14]AI5]AI8]

7zF=15[A19]A19]A19]A19] A19] A19[ A19] A12] A23 [A22[A21[A25 ] A26] A24] A27]

77 =14 [.ca TN c3 TGN 3 T'Co I <7 [ c+ TG cs ' Gl cs |

zZF=12[c6 ] ce6 [ce ] ce [ ce]cece]ce] c6 [cs] ce]cs]|
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copies (Fig. 3). Further, we observed species-specific,
lineage-specific, and individual-level variations of the
length of tandemly repeated C2H2 ZFs as well as var-
iations in the predicted binding motifs (Fig. 6).
Finally, taking all the possible evolutionary forces
(e.g., concerted evolution, gene duplications, and posi-
tive selection) that likely affected the evolution of
PRDM9 and maintained genetic variations even at the
individual levels in these economically important ru-
minant species (genus: Bos, Capra, and Ovis) into
consideration, we presented a schematic model to de-
scribe how the multiple copies of PRDMY9 are derived
and evolved in the ruminant species (Fig. 7).

Discussion

Despite the fact that PRDMY is a key regulator of mei-
otic recombination [7-18, 20, 21, 34, 35, 37, 50, 51] and
plays a dominant role in hybrid incompatibility [6], little
is known about the underlying genetic and evolutionary
mechanisms that generated multiple copies of PRDM9
in many metazoan lineages. The present study elucidates
the underlying evolutionary genetic mechanisms that

shaped the evolution of PRDMY, an important speciation
gene [16, 18], in the economically important ruminants
species (genus Bos, Capra, and Ovis). These domesticated
ruminants are estimated to have diverged from a common
ancestor approximately 26.8 (+8.7) mya [44—47]. In con-
trast to primate’s PRDM7 and PRDM9 gene copies that
form non-separate monophyletic groups and show ambi-
guities concerning the phylogenetic positioning of the
gene duplication events in the primate phylogeny [33], the
observation of deep-split among the three lineages to-
gether with a strong statistical support for monophyletic
groups provide convincing evidence of two gene duplica-
tion events before the ruminant speciation. Taken to-
gether with the results of a previous study [33], our study
suggests that the PRDM9 duplication event in ruminants,
which is estimated to have had occurred sometime
between 27 and 56 mya, is ruminant-specific and likely
occurred after the split of the ruminants ancestral popula-
tions from the most recent common ancestor. Neverthe-
less, based on these results, one might speculate that
PRDM9 of other mammalian lineages may also exhibit
unique phylogenetic histories. Further, together with the
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results of a previous study [33], we ascertained that the
primate-specific PRDM?7 [31, 33, 52] is not phylogenetic-
ally closely related with the novel copies of ruminant
PRDMY, therefore, warrants separate nomenclature of
PRDMO copies belonging to lineage II and III.

Although gene duplication events through inter-
chromosomal especially, autosomal crossing-overs are
common across the mammalian groups [53], the obser-
vations of gene duplications between sex chromosomes
and autosomes is a unique event. Interestingly, a previ-
ous study has also reported inter-chromosomal duplica-
tions of the adrenoleukodystrophy (ADL) locus from
chrX to chromosomes 2pl1, 10p11, 16pll and 22q11 in
humans [54]. However, to our knowledge, so far no such

Table 1 Tests for positive selection for the ZFs of each lineage

inter-chromosomal duplications between chrX and auto-
somes have been reported for any other mammalian
taxa. We previously found a strong association between
PRDM?9 on chrl and recombination phenotypes in cattle
[13]. Sandor et al. [19] have also reported the presence
of an X-linked PRDM9 and have detected several poly-
morphisms in the corresponding C2H2 ZFs. Although
PRDMY is present on both chrl and chrX in cattle, the
genetic and evolutionary mechanisms of the evolution of
PRDM9 on the two chromosomes remain unclear. The
presence of X-linked PRDM9 copies in ruminants could
possibly be a rare event and be explained by some
unique evolutionary mechanisms. Sex chromosomes
were derived from a pair of ancestral autosomes [55]

Lineage | Lineage Il Outgroup
Model Comparison 20/ p 20/ p 20/ p
M1a vs M2a 201377 0.000042 13.8381 0.00099 229932 0.000010
M7 vs M8 204410 0.000036 17.5405 0.00016 23.1771 0.000009
M8 vs M8a 183856 0.000018 129539 0.00032 22.9906 0.000002

Neutral (null) models: M1a, M7, M8a

Selection (alternative) models: M2a, M8

Degrees of freedom: 2 for M1a-M2a, M7-M8; and 1 for M8-M8a

Al Differences between the likelihood scores of null and alternative models
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and have evolved independently many times during the
mammalian evolution [56]. Additionally, Ohta [57] pro-
posed that inter-and intra-chromosomal unequal cross-
ing overs, coupled with mutation and random drift, are
among the fundamental forces in the evolution of

multigene families. More importantly, inter-and intra-
chromosomal unequal crossing overs have been shown
to have a dominant effect on the contraction and expan-
sion of genes in a given family [57, 58]. Therefore, it
could be possible that the ancestral locus of PRDMY,
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which is originally located at the autosomal region in
most of the metazoans, appeared in the ruminant’s chrX
through unequal crossing overs, which might have hap-
pened millions of years ago possibly prior to ruminant's
speciation and resulted in two additional copies of X-
linked PRDM9. Given the fact that ruminants PRDM9
copies have been in the autosome and in the X chromo-
some for at least the past 27 million years, these copies
are predicted to have differential evolutionary trajectories
[56]. Mammalian sex chromosome genes are predicted to
evolve at a much higher rate, and the fixation rate of bene-
ficial mutations is predicted to be higher for X-linked
genes than that of autosomal genes [56]. Interestingly, the
observed elevated dN/dS ratio (i.e., dN/dS > 1), which in-
dicates the evidence of positive selection, further supports
the notion of accelerated rate of evolution of novel gene
copies after a duplication event [48, 49]. Additionally,
these duplicated copies may also have some functional
consequences, and three possibilities would be expected
[48, 59, 60]: i) the novel copies are likely to have experi-
enced relaxed selection pressure and ultimately may ac-
quire deleterious mutations that lead to loss of function, a
process known as non-functionalization; ii) in rare cases

the novel copies can acquire beneficial mutations that
differentiate their functions from that of the ancestor, a
process known as neo-functionalization; and iii) muta-
tions may occur in both ancestor and duplicated copies
of a gene and result in complementary functions which
is known as sub-functionalization [59, 60]. The pres-
ence of a stop-codon at the KRAB region in three
sequences representing the genus Ovis and Capra of
the lineage I1I (Additional file 1) supports the notion of
non-functionalization; however an artifact of sequen-
cing errors cannot be ruled out.

Although it is apparent that PRDM9 of chrl regulates
meiotic recombination in cattle [13] the functional sig-
nificance of the X-linked PRDMY is yet to be explored.
Nevertheless, even in the absence of gene duplication
event, sex chromosome genes are predicted to evolve at
a faster rate than autosomal genes [56]. Therefore, the
mutation rate of the X-linked PRDM9 is expected to be
higher than that of the autosomal copy. However, due to
the limited sample size, we could not directly estimate
the mutation rate for each lineage, but the observa-
tion of incomplete lineage sorting for Bos species in
chrl may be an indication of slower mutation rate of
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lineage I. This inference, however, should be taken with
caution since sequences representing more species are
required to test the hypothesis of mutational differences
between the X-linked and autosomal PRDM9 copies.

In contrast to the N-terminal portion of PRDM9 which
comprises three conserved functional domains [18], the
C-terminal C2H2 ZFs of lineages I and II and the out-
group, especially the amino acid residues at the positions
-1, 3 and 6 that played crucial roles in DNA binding dur-
ing meiotic recombination [16], have likely evolved under
strong positive selection. Although this observation of ex-
tremely rapid evolution of ruminant's PRDM9 C2H2 ZFs
by positive Darwinian selection is nothing surprising and
has been reported for several other mammalian species
[16, 21, 32, 38, 39], the evidence of positive selection on
the X-linked C2H2 ZFs is one of the most striking obser-
vations. This compelling evidence of positive selection on
the X-linked C2H2 ZFs PRDM9 indicates some unknown
functional significance, thus warrants further investigation
on the functional significance of the X-linked PRDM9

C2H2 ZFs. Consistent with a previous study [16], the
present study has also showed evidence of concerted
evolution of both X-linked (lineage II) and autosomal
(lineages I) ZFs of PRDMY, which explained the
species-specific, even at the individual level, variations
in the length of the tandemly repeated C2H2 ZFs and
the predicted binding motifs as well.

Conclusions

In stark contrast to the primate lineage where the PRDM9
duplication mechanism is still an unresolved issue [33] our
study provides strong evidence that the autosomal PRDM9
of ruminants has been duplicated to the X chromosome in
the ruminants, which likely happened before the ruminant
speciation events. The presence of X-linked PRDM9 copies
in ruminants could possibly be a rare event and may be
explained by some unique evolutionary mechanisms, pos-
sibly, through unequal crossing-overs. Nevertheless, the
inter-chromosomal duplications before the ruminant’s spe-
ciation together with the persistent positive selection and
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concerted evolution of ZFs, at both species and individual
levels, shaped the evolution of autosomal and X-linked
PRDM9 in ruminants. Collectively, this study reports the
unique evolutionary mechanism of PRDM9 in ruminants,
including the presence of duplicated copies of PRDM9 on
chrl and chrX both with active C2H2 ZFs under positive
selection. Concomitantly, a recent study has also reported
extensive diversity of PRDM9 in several ruminant species
[40]. Nevertheless, given such lineage-based unique evolu-
tionary trajectories of the PRDMY, as demonstrated in the
present study as well as in previous studies (eg. [16, 33]),
taking more taxonomic lineages into consideration, future
studies should be carried out to unravel the evolutionary
trajectory of this important speciation gene across the
metazoans.

Methods

Phylogenetic analyses

To unravel the evolutionary dynamics of PRDM9 and its
novel copies in ruminants using the previously charac-
terized cattle PRDM9 as reference sequences ([61] Gen-
Bank accession numbers: GJ060462 KJ020105), all the
available complete coding nucleotide sequences of ru-
minant PRDM9 were retrieved from GenBank [62]
(Additional file 4). Since the PRDM gene sequences have
varying numbers of Zinc Finger (ZF) repeat sequences at
their C-terminal domain, to avoid non-specific hits, we
used the N-terminal portion of the PRDM amino acid
sequences of the reference genomes and subsequently
retrieved the complete DNA sequence of each PRDM7/
9. Using the well-characterized and annotated human [9,
10, 52], mouse [32], and cattle [61] PRDM 7/9 protein
sequences, we also retrieved the PRDM7/9 protein se-
quences representing primates, rodents, ruminants, and
aquatic mammalian groups from GenBank. The con-
served SET domain that comprises 118 amino acids was
used for phylogenetic reconstruction of PRDM7/9 gene
tree and specifically to assess the phylogenetic position-
ing of the human PRDM7. We aligned the protein
sequences and manually checked the sequence quality
using MEGA?7 [63]. Amino acid alignments of the N-
terminal functional domains representing different taxo-
nomic groups (primates, rodents, ruminants, and aquatic
mammals) are shown in Additional files 1, 2 and 3. To
reconstruct the PRDM gene tree, amino acid sequences
of the SET domain of 17 PRDM genes [31] were used as
reference sequences. Based on the previous reports,
functional domains of PRDM9 were identified [16, 18].
Sequences were aligned using the MUSCLE algorithm
implemented in MEGA7 [63]. All the sequences were
manually visualized to ensure high quality. Since the N-
terminal portion of the PRDM9 that comprises three
functional domains has slower evolutionary rate and
evolutionarily conserved across the metazoan lineages
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[18], we used this portion of the sequences to infer evo-
lutionary history and phylogenetic relatedness among the
novel copies of the ruminant’s PRDM9. Protein alignment
of the N-terminal portion of the PRDM9 and its novel
copies are shown in Additional files 1 and 3. Aquatic mam-
mals seemed to have close phylogenetic affiliation with
ruminants [46], therefore PRDM9 of aquatic mammals
were used as outgroup. Nucleotide and amino acid based
maximum-likelihood (ML) phylogenies were reconstructed
under appropriate substitution models in MEGA7 [63].
Appropriate models of nucleotide and amino acid substitu-
tions for the respective datasets were selected under the
Bayesian Information Criterion (BIC) implemented in
MEGA?7. JTT (Jones—Taylor-Thornton) + G (gamma dis-
tribution shape parameter) [64] and TrN93 (Tamura-Nei)
+ G [65], respectively, were the best-fit amino acid and nu-
cleotide substitution models selected by BIC. Using the
same program, nodal supports were estimated with 1000
bootstrap replicates. The time of divergence of the respect-
ive clades/species that were previously estimated based on
the fossil based molecular clock calibration [44—47] were
used to determine the timing of ruminant’s speciation
and ruminant’s PRDM9 duplication events. The ZF ar-
rays in each PRDM9 sequences were identified accord-
ing to the previously defined nomenclature [9]. The
putative DNA binding motifs for each PRDM9 C2H2
were predicted using the software (available at: http://
compbio.cs.princeton.edu/zf/) [66, 67], which has been
previously used in the prediction of PRDM9 binding
motifs in primates [14, 68, 69].

Test for positive selection

Given the fact that the presence of recombinant se-
quences in the data set could potentially affect the selec-
tion analyses [70, 71] using the recombination detection
programs (RDP) implemented in RDP ver. 3 [72], we
performed recombination detection analyses to ensure
there are no recombinant sequences in the respective
data sets used in selection analyses. The ratio of nonsy-
nonymous (dN) to synonymous (dS) substitutions (» =
dN/dS), which has been widely used to measure the
strength of selection on a protein-coding gene [73, 74],
was used to measure the selection pressures in each
dataset under five codon-based substitution models
(neutral models: M1la, M7, M8a; selection models: M2a
M8) that are implemented in the CODEML of the
PAML 4.7 package [75], and their performances were
evaluated using Likelihood Ratio Tests (LRTs) [73, 76].
Codon sites with Bayes-Empirical Bayes (BEB) posterior
probability > 0.95 were considered to be under positive
selection. The inferred unrooted ML trees for the
respective datasets that were used as input trees for the
CODEML program were reconstructed using the
PhyML ver. 3 [77]. To know whether o varies across the
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branches, using the inferred phylogeny we compared the
free-ratios model (M1), which assumes an independent
o for each branch, with the one-ratio model (MO) that
assume uniform o across the branches [76]. LRT was
used to select the best-fit model. To check consistency
of the selection results, we performed selection analyses
using different input trees that were built under different
tree-building methods implemented in MEGA [63] and
PhyML [77]. Our selection results are very much con-
sistent and are not biased by different tree building
methods. To know the patterns of nonsynonymous and
synonymous variations across the ZFs in respective line-
ages, using the DNAsp ver 5.0 [78], we also performed
Sliding Window (window length = 5bp step size = 1bp)
Analyses (SWA).
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