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Abstract

Background: Rotifers are microscopic aquatic invertebrates that reproduce both sexually and asexually. Though
rotifers are phylogenetically distant from humans, and have specialized reproductive physiology, this work identifies
a surprising conservation in the control of reproduction between humans and rotifers through the estrogen
receptor. Until recently, steroid signaling has been observed in only a few invertebrate taxa and its role in
regulating invertebrate reproduction has not been clearly demonstrated. Insights into the evolution of sex
signaling pathways can be gained by clarifying how receptors function in invertebrate reproduction.

Results: In this paper, we show that a ligand-activated estrogen-like receptor in rotifers binds human estradiol
and regulates reproductive output in females. In other invertebrates characterized thus far, ER ligand binding
domains have occluded ligand-binding sites and the ERs are not ligand activated. We have used a suite of
computational, biochemical and biological techniques to determine that the rotifer ER binding site is not

occluded and can bind human estradiol.

Conclusions: Our results demonstrate that this mammalian hormone receptor plays a key role in reproduction
of the ancient microinvertebrate Brachinous manjavacas. The presence and activity of the ER within the phylum
Rotifera indicates that the ER structure and function is highly conserved throughout animal evolution.
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Background
Signaling through steroid receptors regulates develop-
ment, growth and reproduction in most vertebrate
animals [1-7]. Recently, concern has grown about sus-
ceptibility of aquatic invertebrates to endocrine disrup-
tion, which has been documented for vertebrates [8].
Endocrine disruption is the process by which certain
chemicals, called endocrine disrupting compounds,
interfere with the endocrine system and disrupt develop-
mental, reproductive, neurological, and immune pro-
cesses. Endocrine disrupting compounds are a subclass
of organic contaminants that have been detected in
wastewater and surface waters throughout the world [9].
Although steroid signaling is thought to be the chief
means by which most animals regulate reproduction,
it has been confirmed in only a few invertebrate taxa
[10] and its regulatory role has not been generally
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demonstrated [7, 11-13]. Steroid signaling may be
present in a much more diverse group of animals
than currently demonstrated. Genome and proteome
analysis indicates that modern steroid receptors evolved
from an ancient receptor that arose more than 600 Ma
ago, before the common ancestor of bilaterians diverged
into protostomes and deuterosomes [6].

Rotifera is one of the largest microinvertebrate phyla
[14]. Although monogonont rotifers are capable of
both asexual and sexual reproduction, the chemical
signals regulating these are poorly understood. Sexual
reproduction is triggered by a quorum sensing process [15],
induced by secretion of a Mixis Inducing Protein (MIP)
[16]. The similarity of MIP to a putative steroidogenesis-
inducing protein in humans [17] suggests that steroid hor-
mones may have a role in regulating sexual reproduction in
B. manjavacas.

The estrogen receptor (ER) is the most ancient of all
of the sex steroid receptors [2, 4, 5, 18]. However, there
are disparities and inconsistencies in the known phylo-
genetic distribution of the ER in invertebrates and in the
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understanding of their function in sexual differentiation,
development, reproduction and behavior. The supraphy-
lum Lophotrochozoa is especially useful for studying the
evolution of ER because some phyla such as annelids
have ERs with the capacity to bind estradiol [7], while
other phyla such as molluscs have ERs that do not bind
estradiol [6]. Rotifera is a Lophotrochozoa phylum [19]
that has yet to be explored for the presence of functional
ERs.

Though steroid signaling has not been extensively
studied in rotifers, there are several lines of evidence
that support the hypothesis that steroid signaling may
be an important mechanism of regulating rotifer
reproduction. First, the steroidal hormone progesterone
has been identified in rotifer biomass [13], and a pro-
gesterone receptor has been identified and character-
ized in the rotifer transcriptome [13, 20, 21]. Second,
published rotifer transcriptomes [22, 23] contain sev-
eral key enzymes required for sex steroid biosynthesis
[24], including cytochrome P450 4vC (P450), estradiol
17-B dehydrogenase 12 (EST), sphingolipid delta 4
desaturase/c-4 hydroxylase (SPH), estrogen receptor
binding protein (ERB), sterol O-acyltransferase 1 (SOA),
and a steroid reductase (SR). Third, exposure to vertebrate
steroids, including progesterone, causes an increase in ro-
tifer sexual reproduction in vivo. [21, 25-29]. Moreover,
rotifers are responsive to endocrine disrupting compounds
[28, 30], implying that they use steroids to regulate their
reproduction.

Unlike progesterone, neither estrogen nor testoster-
ones have been detected in rotifer tissues [31]. Nonethe-
less, three genes have been identified in the rotifer
transcriptome that are highly similar in sequence to
genes known to promote both biosynthesis and activity
of estradiol and estrogen receptors in other animals.
These include a P450-like gene that has high similarity
to aromatase. Aromatase is an enzyme that is respon-
sible for a key step in biosynthesis of estrogens [32]. An
estradiol 17-B dehydrogenase—like gene (EST) also was
identified in the rotifer trancriptome as in other animals
[33]. EST catalyzes the interconversion of testosterone,
androstenedione, estradiol and estrone. Furthermore, an
estrogen receptor binding protein (ERB) has been identi-
fied in the rotifer transcriptome. ERB enhances the activ-
ity of estrogen receptors [34]. The expression of these
transcripts in B. manjavacas supports the hypothesis
that steroid signaling plays a key role in rotifer
reproduction and development.

The discovery of the progesterone receptor in rotifers
[13, 20], as well as the previously described evidence of
steroid signaling in rotifers, led us to investigate the pos-
sibility of expression of an estrogen receptor. We began
by searching the transcriptome of B. manjavacas. Our
search led to the identification of a sequence of 1148
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nucleotides with 43% similarity to several animal ERs,
including human, lamprey and several fish species. Iden-
tification of an estrogen-like receptor in the phylum
Rotifera encouraged us to explore its role in endocrine
signaling and reproductive physiology. We cloned and
amplified the rotifer estrogen-like receptor ligand binding
domain (LBD) and explored its binding partners. Here, we
show that human estradiol binds to the rotifer estrogen-
like receptor LBD and that human estradiol in vivo local-
izes to rotifer reproductive tissues. Using a library of newly
synthesized fluorescent arylideneimidazolidinone (AMI)
probes, our previous work showed selective binding of
some probes to various sites on the human ER [35]. Here
we show that many of these AMI probes also bind to the
rotifer estrogen-like receptor, and selectively localize to
specific tissues. The probes have no effect on rotifer sur-
vival, but in some cases enhance rotifer reproduction. This
work shows that the rotifer estrogen-like receptor has a
functional ligand binding site and is ligand-activated. Fur-
thermore, this work provides evidence of the ancient ori-
gins of ligand-activated steroid receptors.

Results

Identification and analysis of the B. manjavacas ER LBD
The B. manjavacas estrogen-like receptor ligand binding
domain (LBD) was identified by searching the B. manja-
vacas transcriptome for homology with the human ER
LBD. The homologous rotifer sequence was used to de-
sign constructs for in vivo yeast assays. A CLUSTALW
[36] alignment indicates there is 68% sequence similarity
between human ER and rotifer estrogen-like receptor
LBDs (Additional file 1: Figure S1 and Table 1). The hu-
man ER LBD, which has been crystallized, was used to
construct a three-dimensional homology model of the
rotifer ER LBD (Fig. 1). We developed an empirical error
model, specific to ER LBDs, which allows us to estimate
the uncertainty in the B. manjavacas estrogen-like LBD
homology model.

Confocal fluorescence

AMI probes are ER LBD ligands that fluoresce upon bind-
ing [35], and allow probing of in vivo distributions of the
rotifer estrogen-like receptor LBD. Fluorescence assays in
which rotifers were treated with AMI probes AB-1, AB-9,
AB-18, AB-43, and AB-89, AB-114 (Additional file 2:

Table 1 ER LBD sequences and structures are highly conserved
RMSD (structure vs.

Species % Sequence % Sequence

model, A) identity vs. Human  similarity vs. human
Human 0 100 100
Rat 713 57 94
Oyster 145 33 72
Rotifer ~ 1.69 25 68
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construct the 3D model of the rotifer estrogen-like receptor LBD

Fig. 1 A homology model of the 3D structure of the B. manjavacas estrogen-like receptor LBD (yellow). a Superimposition of the rotifer (model)
and human (X-ray) ER LBDs (pink). The model suggests that the structure of the binding pocket is conserved between human and rotifer. b Close
up view of the rotifer ER LBD ligand binding site occupied by estradiol. The amino acids that form the ligand binding site are indicated. Hydrogen
bonds are dashed black lines. van der Waals contacts are diffuse red lines. The 3D structure of the human ER LBD was used as a template to

Phe 64 Arg 50

Figure S2) demonstrate localized binding in specific
tissues, including ovaries and vitellarium (yolk gland)
(Fig. 2). Auto-fluorescence and other confounding signals
were not observed in rotifers treated with estradiol alone.

Genetic selection using the rotifer estrogen-like receptor
Yeast two hybrid assays [37-40] were used to assay es-
tradiol and AMI probe binding to the putative ER of ro-
tifer. Yeast growth is observed when two fusion proteins
associate in a ligand dependent fashion (Fig. 3). Minimal
growth is seen in the negative control, with no ligand
added to the media. AMI probes tested here were lim-
ited to those that gave positive results binding to the hu-
man ER in chemical complementation studies. Ligand-
activated growth was observed for the rotifer estrogen-
like receptor with all ligands tested here (Fig. 3). Cells
grown in AB-18 grew 40% more than the samples with
estradiol.

Chromophore range finding assays

AMI probes and estradiol (Additional file 2: Figure S2)
were tested for rotifer toxicity. Inhibitory effects on
B. manjavacas reproduction after 72 h were observed
in estradiol concentrations of 20 uM (t=3.16, df=6,
P=0.020), 40 uM (t=12.73, df=6, P=0.000), and
60 uM (t=8.49, df =6, P=0.000). AB-89 had inhibi-
tory effects on B. manjavacas reproduction at 40 pM
(t=5.00, df = 6, P =0.020). B. manjavacas exposure to any
AMI probe at 10 pM had no significant effect on rotifer

reproduction. Therefore, we exposed rotifers to 10 uM of
the AMI probes for the remainder of the study.

Rotifer survival

No significant lifespan extension or reduction was ob-
served in B. manjavacas neonates treated with 10 uM
AMI probes or estradiol, relative to untreated control
(Fig. 4a). Only rotifers treated with AB-9 had a signifi-
cantly lower survival rate. The following P values are from
log-rank tests: Estradiol (P=0.679), AB-18 (P =0.092),
AB-9 (P=0.003, 25% lower survival), AB-89 (P =0.961),
AB-43 (P =0.843) and AB-1 (P =0.371).

Reproduction tests

B. manjavacas reproduction began after 2 days and
mean offspring production per female peaked on days 4
or 5 for all AMI probe treatments. Reproduction ceased
after 14 days. Exposure to AB-89 at 10 pM significantly
increased lifetime reproduction of rotifer females by
38%. The average reproductive rate for B. manjavacas
reproduction increased from 18 to 24 offspring per ani-
mal (t=-2.57, df=39, P=0.007). Estradiol at 10 pM
showed no significant effect on reproductive output
of B. manjavacas. In contrast, AB-89 significantly in-
creased reproduction by 26%, 19 — 24 offspring per
animal (t=-2.16, df =43, P =0.018) (Fig. 4b).

Modeling of putative ER LBD from rotifer
A sequence alignment of the rotifer ER-like LBD with
known ER LBD sequences reveals that the amino acid
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Fig. 2 Synthetic fluorescent ligands bind selectively within B. manjavacas neonates. Bright field confocal, and merged microscopic images of
rotifers treated with ER binding small molecules. The compounds bind primarily to the reproductive tissues, the vitellarium, and the mastax.
Estradiol and compound AB-89 exhibited greater binding in the vitellarium than in other tissues
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sequence of the rotifer ER-like LBD is highly conserved
relative to known ER LBDs (Table 1). The sequence of
the ligand-binding pocket of rotifers falls within the
consensus of other ER LBD ligand binding pockets
(Additional file 1: Figure S1). The rotifer putative ER
LBD is 68% conserved when compared to the human ER
LBD (Table 1 and Additional file 1: Figure S1).
Homology modeling of the rotifer ER-like LBD, using
the human ER LBD as a template, provides a reasonable
model (Fig. 1). The homology model returns the antici-
pated global fold, with correct disposition of the amino
acids known to be involved in ligand binding. We have
well-grounded estimates of the accuracy of the rotifer
ER-like LBD model. The accuracy of the model indicates
it is useful for understanding the structure of the bind-
ing pocket and the selectivity of ligand binding. It is

clear that the rotifer ER-like LDB does not have an
obstructed binding pocket. We estimate that RMS error
in atomic positions of the rotifer model vs. the actual
structure (unknown) to be approximately 1.69 (Fig. 5).
This value is an upper bound of the errors in the
binding site in our system because canonical second-
ary structures such as the a-helices that form the lig-
and binding site are the most accurately predicted
part of the model.

Discussion

This work demonstrates the effect on reproduction of
ligand binding to the rotifer estrogen-like receptor and
suggests an ancient role for the ER in regulating animal
reproduction. We identify and characterize an estrogen-
like receptor in the phylum Rotifera. Our principal
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Fig. 3 Chemical Complementation is a binding assay. This assay
couples yeast survival to the presence of a small molecule ligand
(red). The yeast contains the GAL4 response element that controls
the expression of HIS3 biosynthesis genes. The rotifer putative ER
LBD is fused to a GAL4 DNA binding domain (GBD). This fusion
protein binds to the GAL4 response element. Ligand binding by the
ER LBD leads to recruitment of the SRC-1 coactivator, which is fused
to the GAL4 activation domain (GAD). Transcription of the histidine
biosynthesis genes, upon ligand binding, allows the yeast to survive
in media lacking histidine [37-40]. The results show that estradiol
and the synthetic fluorescent ligands bind to the rotifer the ER-like
LBD in vivo. The negative control (with no added ligand) exhibited
minimal growth. The natural ligand, estradiol, increases growth on
the same order as the synthetic ligands. Neither estradiol, nor the
synthetic fluorescent compounds have any effect on yeast growth in
the absence of Gal4-ER [35]

hypothesis is that this putative ER is functional in the ro-
tifer, B. manjavacas, where it interacts with small ligands
and controls reproduction.

These studies identify a putative rotifer ER and provide
evidence ER chemoreception as a regulatory step in
rotifer reproduction. We first identified an estrogen-like
receptor gene sequence in the transcriptome of B. man-
javacas. The identification of a putative ER-like receptor
in the rotifer transcriptome is especially significant be-
cause active transcription signifies the need for estrogen
signaling during rotifer development. Sequence align-
ments of the rotifer putative ER against the sequences of
other animals illustrate a significant degree of similarity
between the rotifer putative ER and those from higher
animals. We performed three-dimensional homology
modeling of the rotifer ER-like LBD, using the experi-
mental structure of the human ER LBD as a template.
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This model allowed us to characterize the ligand binding
pocket in the rotifer ER (Fig. 1). Future work includes
isolating the DNA Binding domain of the ER-like
receptor.

Using fluorescent probes that bind specifically to the
rotifer ER-like LBD (Fig. 3) [35] we demonstrate
localization of the ER within the reproductive tissues of
female rotifers (Fig. 2). The probe localization varies
slightly between the different probe types, however, this
could be due to varying binding affinity to the probes, a
phenomenon also seen in mammalian cells [41]. How-
ever, all probes exhibit significant binding within the re-
productive tissues of the rotifer. This localization is
consistent with observations of ER localization in other
animals. Future work will include completing in situ
hybridizations to determine the localization of the
expressed mRNA as well. A comparison of the protein
vs RNA localization could prove helpful.

Next, we tested the probes for specific binding to the
ER in yeast genetic selection assays because probe bind-
ing to rotifer reproductive tissues does not alone demon-
strate probe specificity. We verified the functional
binding of the AMI probes, as well as estradiol, to the
rotifer putative ER in the yeast genetic selection assays.
Our results indicate that estradiol and the AMI probes
in fact bind to the rotifer ER-like LBD.

These data are consistent with specific binding of both
estradiol and the AMI probes to human ER. The activa-
tion seen upon binding to the rotifer ER-like LBD is sig-
nificant because, although an ER -like receptor has been
identified in mollusks, it is constitutively activated, inde-
pendent of small molecule ligands [42]. In contrast to
the occluded mollusk ER ligand-binding site [42], our
homology models suggest the rotifer ER binding site is
not occluded. This is consistent with our observation of
ligand activation.

Although other studies have questioned the synthesis
of steroid hormones in lophotrochozoans [43], our re-
sults complement previous work in rotifers and steroid
signaling. Specifically, our work parallels the identifica-
tion of progesterone and a progesterone receptor in roti-
fers [13]. While the focus of our study was not to
identify the natural ligand for the ER-like receptor, verte-
brate steroids have long been recognized to have in vivo
biological effects in rotifers that may include regulation
of sexual and asexual reproduction [21, 25-29]. Further-
more, the identification of key enzymes required for sex
steroid biosynthesis in rotifers further supports our data
[24]. Further biological characterization of both the roti-
fer ER-like receptor and the identified enzymes is re-
quired to provide more insight into the function of the
receptor in rotifers.

Though the rotifer homology model provides consid-
erable support of the presence of a physiological ligand
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Fig. 4 a Survivorship of rotifers treated with estrogen-like receptor binding small molecules. b manjavacas neonates were treated with 10 uM of
each compound for the duration of their life. No significant changes in lifespan were observed in the treated animals when compared to animals
grown without ligands. b AMI ligands do not negatively affect the reproductive rate of rotifers. The effects of ER binding AMI molecules on
rotifer reproduction are shown above. AB-89 significantly increased reproduction compared to the control group. Exposure to ER binding AMI
molecule AB-89 at 10 uM significantly increased by 38%. The average reproductive rate for B. manjavacas reproduction increased from 18
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for the rotifer estrogen-like receptor, it is likely that the
ligand is unlike human estradiol. Previous studies pro-
vide evidence that steroid signaling was independently
recruited many times from slightly different molecules
[43]. Testing of this hypothesis will come from the isola-
tion of a natural ligand for the rotifer estrogen-like
receptor.

Physiological assays with rotifers with both the AMI
probes and estradiol confirm that the probes and es-
tradiol function similarly. Neither estradiol nor the
probes cause an increase in mortality at 10 pM
(Fig. 4a). Treatment with the probe AMI-89 resulted
in a significant increase in reproductive output of

female rotifers (Fig. 4b). This work can be completed
with the natural ligand, once isolated to conclude
more definitively the function of the ER-like receptor
in rotifers. While this work is far from definitive, it
does provide significantly more evidence of the evolu-
tion of the estrogen receptor.

Collectively, our results suggest that an estrogen-like
compound plays a central role in regulating reproduction
of the ancestral microinvertebrate B. manjavacas (Rotifera).
The ER exhibits conservation of structure and function
over a broad expanse of animal phylogeny. The presence
and activity of a putative ER in the Phylum Rotifera
confirms the ancient ancestry of the ER.
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Fig. 5 Error estimate for the rotifer ER-like LBD homology model. RMSD of atomic positions (A) were calculated by superimposing the homology
model for each organism against the real crystal structure. RMSD values vs. percentage sequence similarity are plotted. We can estimate the RMSD
of the rotifer ER-like LBD model based on its sequence similarity to the human ER LBD. The estimated RMS error for the rotifer model is 1.7 A. R* =095

Conclusions

Here we have identified and characterized an ER-like re-
ceptor in the Phylum Rotifera. Our study provides an
initial synthesis of computational, chemical and bio-
logical techniques to confirm the structure and function
of this receptor in B. manjavacas, an ancestral inverte-
brate. Chemical cues have long been hypothesized to
mediators for the switch from asexual to sexual
reproduction in rotifer populations. This study provides
evidence that microscopic invertebrates’ reproductive
development may also be controlled by ligand activated
signaling.

Methods

Rotifer culturing

B. manjavacas [44, 45] neonates were hatched from rest-
ing eggs in 15 ppt artificial seawater (ASW, Instant
Ocean salts) under constant fluorescent illumination at
25 °C. B. manjavacas was originally collected from Azov
Sea and was previously known as Brachionus plicatilis
[16, 46]. B. manjavacas has been cultured continuously
in the Snell laboratory since 1983 [13].

ER identification and homology modeling

Querying the B. manjavacas transcriptome database
(https://www.ncbi.nlm.nih.gov/genbank/) using the hu-
man ER and the BLASTX tool [47] returned a rotifer ER
cDNA sequence. Alignments using its deduced amino
acid sequences were conducted with CLUSTALW [48].

The ER ligand binding domain (LDB) was modeled with
the SWISS-MODEL tool of the Swiss PDB Viewer [49]
using human ER structure (PDB 1ERE) as a template.
The efficacy of the SWISS-MODEL tool for modeling
ER structures was verified by modeling additional ER
LBDs. We constructed models of a series of ER LBDS
and compared the homology models with corresponding
x-ray structures, which are known. Modeled ER LBDs
from animals (oyster, rat, human and rotifer), using
human as the template, were superimposed on the cor-
responding crystal structures. Root mean square devia-
tions (RMSDs) of atomic positions were calculated to
determine relationships of sequence similarity (human
template compared to model) and degree of error in the
model in three dimensions (model compared to x-ray
structure). The RMSDs were plotted against the amino
acid similarity. A trend line was used to predict the
RMSD for the rotifer model versus the real (unknown)
rotifer structure. In short we made an ER-specific error
model, following a previous more general method [50]
for assaying the quality of homology models.

In silico binding of AMI fluorophore ligand to the Rotifer
ER

Structures of AMI fluorophore probes were energy mini-
mized with ChemBioDraw 3D Ultra (Cambridge Soft,
USA). In silico docking of the probes to the rotifer ER
LBD was carried out with Autodock Vina [51]. The ER
was prepared for docking via UCSF CHIMERA, an
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interactive molecular graphics program, by removing the
ligand and water molecules, adding polar hydrogens,
and assigning Kollman united atom charges. The lowest
energy ligand/receptor complexes were subjected to fur-
ther studies. Final images with docking results were ren-
dered in PyMOL.

Interaction quantification assay in yeast

All known proteins that fluoresce in the visible region
contain the AMI moiety [52]. Green fluorescent protein
(GFP) for example contains a hydroxybenzylidene AMI
probe within a f3-barrel. Natural AMIs are auto-
synthesized within the folded protein from aromatic
amino acids. Recently, we have adapted the use of AMIs
to turn on fluorescence from a variety of biological bind-
ing molecules, including proteins [53]. The structural
similarity of estradiol and appropriately substituted
AMIs suggested that these fluorophores would provide
excellent candidates for turn-on fluorescence in the
presence of ER receptors. We adapted the Bazureau syn-
thesis to generate an extensive library of AMI fluoro-
phores, outside the context of a protein [54].

Expression and purification of the rotifer ER LBD

The DNA sequence encoding the putative ER LBD from
rotifer was synthesized by recursive PCR [55] and cloned
into the pGADT7 AD expression vector. The rotifer ER
LBD in pGADT7 was transformed into the yeast strain
PJ694A using the lithium acetate transformation proced-
ure [56]. Transformants were selected in media lacking
leucine and tryptophan.

Genetic selection using the rotifer putative ER

A yeast genetic selection assay [57] was performed to
assay binding of florophores and estradiol to the rotifer
putative ER LBD. The yeast two-hybrid assay was per-
formed in the PJ69-4A strain and has been previously
described [57-59]. Interaction of AMI probes with the
rotifer ER receptor results in the activation of the GAL4
promoter and the production of histidine (Fig. 3). Inter-
actions were assayed in 96-well plates with media lack-
ing histidine, leucine, and tryptophan (SC- HLW). The
media contained 0.1 mM 3-amino-1, 2,4-triazole (3-AT)
and were tested with and without AMI fluorophore
ligands or 17B-estradiol at varying concentrations
(ranging from 10 nM to 10 uM). As a control, untrans-
formed yeast were also tested for selection with the AMI
compounds and EST. Yeast cells were added to 96-well
plates to a final concentration of 3.0 x 10° cells/ml.
Plates were incubated at 30 °C, with shaking at 170 rpm.
Optical density (OD) readings at 630 nm were recorded
at 0, 24, and 48 h. The affinity of each AMI fluorophore
ligand for the rotifer ER receptor was estimated quanti-
tatively by growth of the yeast.
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Concentration range finding in rotifers

Waterborne exposures to AMI compounds and estradiol
were used in these experiments because they were the
most feasible. With this method of exposure, the actual
dose to the rotifer is most likely significantly lower due
to uncertainties in ingestion, absorption, assimilation,
and excretion [24]. Each AMI probe was diluted with
15 ppt ASW to 10, 20, 40, and 60 puM to give a final vol-
ume of 5 mL for each. ASW alone and 20:80 DMSO/
Ethanol diluted with ASW were used negative controls.
Each treatment was assigned to and dispensed in 1 mL
quantities to 4 wells in a 24-well plate. A B. manjavacas
hatchling 4 — 6 h old was added to each well. After a
30 min incubation, 200 uL of the algae Tetraselmis sue-
cica diluted with 15 ppt ASW was added, for a final
algae concentration of about to 2e” cells per ml. Plates
were kept at 25 °C in low light. At 24 h intervals over
the next 72 h, the offspring produced in each well were
recorded and removed. The highest concentration of
AMI probe in which there was no inhibition of rotifer
reproduction was observed to be 10 uM for all ligands
tested. A concentration of 10 uM was used for survivor-
ship and fecundity analysis, as well as, in confocal mi-
croscopy experiments.

Confocal fluorescence microscopy

Approximately 15 — 30 B. manjavacas were incubated at
room temperature for 1 h in AMI probe at 10 pM in
100 pL of 15 ppt ASW. Negative controls were incu-
bated 20:80 DMSO/Ethanol. The animals were anesthe-
tized with 200 pL carbonated water, fixed with 5 pL 20%
formalin, pelleted, and placed in 250 pL of PBS
(130 mM NaCl, 10 mM NaH,PO,, pH 7.2). Samples
were stored at 4 °C in the dark until they were imaged.
Imaging was performed using a Zeiss LSM 700-405
confocal microscope, with magnification of 63X Oil DIC
with excitation at 405 nm.

Lifespan and reproduction tests

A 24-well plate was set up for each treatment, with
one B. manjavacas hatchling per well containing 1 mL
of T. suecica (2 x10° cells/mL). Prior to the addition
of the hatchlings, each AMI probe was diluted to
10 uM with the T. suecica and 15 ppt ASW mixture.
Once again, with waterborne exposures to AMI com-
pounds and estradiol, the actual dose to the rotifer is
most likely significantly lower due to uncertainties in
ingestion, absorption, assimilation, and excretion [24].
However, this study does reveal the sensitivity of roti-
fers to estradiol as well as the ER binding AMI com-
pounds. A negative control plate with only a 20:80
DMSO/Ethanol solution (10 uM) was prepared. Plates
were stored at 22 °C in low light. Every 24 h, the fre-
quency of survival was recorded until the death of all
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the test animals. Offspring produced in each well were
recorded and removed. After 8 days, animals were
transferred to new plates with fresh 7. suecica and
treatment solutions. A Kaplan-Meier survival analysis
was completed to identify the differences in survival
between treatments and control. A one-way ANOVA
and Dunnett’s test was also used to identify differences
in reproduction and survival between treatments and
control.

Additional files

Additional file 1: Figure S1. The alignment of the ER LBD amino acid
sequences of rotifer and human shows significant similarity. Conserved
amino acids are green. Similar amino acids are cyan. Amino acids that
directly interact with the estradiol ligand are boxed (rotifer, red; human;
blue). These amino acids are highly conserved as well. (XLS 258 kb)

Additional file 2: Figure S2. Six fluorescent synthetic ligands (AMIs)
were tested for in vivo binding to ER in live rotifer neonates and with the
yeast chemical complementation assay using a cloned rotifer ER LBD.
These compounds were chosen because previous work verified their
binding to the human ER LBD in yeast chemical complementation assays.
These compounds fluoresce upon binding to their target [35]. Estradiol is
the natural ligand for the human ER and does not fluoresce. (XLS 47 kb)
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