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Abstract

Background: Over the last 300 years, interactions between alewives and zooplankton communities in several lakes
in the U.S. have caused the alewives’ morphology to transition rapidly from anadromous to landlocked. Lakes with
landlocked alewives contain smaller-bodied zooplankton than those without alewives. Landlocked adult alewives
display smaller body sizes, narrower gapes, smaller inter-gill-raker spacings, reach maturity at an earlier age, and are
less fecund than anadromous alewives. Additionally, landlocked alewives consume pelagic prey exclusively
throughout their lives whereas anadromous alewives make an ontogenetic transition from pelagic to littoral prey.
These rapid, well-documented changes in the alewives’ morphology provide important insights into the
morphological evolution of fish.
Predicting the morphological evolution of fish is crucial for fisheries and ecosystemmanagement, but the involvement
of multiple trophic interactions make predictions difficult. To obtain an improved understanding of rapid morphological
change in fish, we developed an individual-based model that simulated rapid changes in the body size and gill-raker
count of a fish species in a hypothetical, size-structured prey community. Model parameter values were based mainly
on data from empirical studies on alewives. We adopted a functional trait approach; consequently, the model
explicitly describes the relationships between prey body size, alewife body size, and alewife gill-raker count. We
sought to answer two questions: (1) How does the impact of alewife populations on prey feed back to impact alewife
size and gill raker number under several alternative scenarios? (2) Will the trajectory of the landlocked alewives’
morphological evolution change after 150–300 years in freshwater?

Results: Over the first 250 years, the alewives’ numbers of gill-rakers only increased when reductions in their body
size substantially improved their ability to forage for small prey. Additionally, alewives’ gill-raker counts increased more
rapidly as the adverse effects of narrow gill-raker spacings on foraging for large prey were made less severe. For the first
150–250 years, alewives’ growth decreased monotonically, and their gill-raker number increased monotonically. After
the first 150–250 years, however, the alewives exhibited multiple evolutionary morphological trajectories in different
trophic settings. In several of these settings, their evolutionary trajectories even reversed after the first 150–250 years.

Conclusions: Alewives affected the abundance and morphology of their prey, which in turn changed the
abundance and morphology of the alewives. Complex low-trophic-level interactions can alter the abundance and
characteristics of alewives. This study suggests that the current morphology of recently (∼ 300 years)-landlocked
alewives may not represent an evolutionarily stable state.
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Background
Functional trait approaches for studying rapid
morphological evolution in fish
Predator-prey interactions affect contemporary evolu-
tionary processes such as the rapid morphological
changes observed in several fish species [1–4]. Predicting
morphological changes in fish is crucial for fisheries and
ecosystem management, but such changes are affected
by a complex set of trophic interactions, which makes
accurate prediction very difficult.
Functional trait approaches have been widely used to

study the effect of the disturbance caused by a species
on a community [5–7], but they can also be used to
study how the evolution of one species in a community
is affected by the other species that are present. Func-
tional traits strongly affect organismal performance [8], so
changes in species’ functional traits can affect the abun-
dance of its predators and prey, which in turn alters its
fitness landscape. For example, predator morphology can
determine the size of prey that predators consume [9].
Conversely, prey size distribution can influence predator
size distribution [10]. By extension, entire communities
can be analyzed by studying the functional abilities of both
the assemblage as a whole and the component species
individually [5–7].

Rapid changes in alewife morphology
The morphological transition of alewives, Alosa pseu-
doharengus (Wilson), in isolated freshwater ecosystems
provides a well-documented empirical illustration of the
relationship between functional trait evolution in fish and
changes in the zooplankton communities of the fishes’
environment [3]. Over a period of 45–300 years, alewife
populations trapped in freshwater ecosystems have under-
gone a transition from an anadromous to a landlocked
morphology, which has been attributed to their interac-
tions with zooplankton communities [11]. Alewives are
the dominant force structuring zooplankton communities
in eastern North American lakes [12–14]; for example,
lakes with landlocked alewives contain smaller-bodied
zooplankton than those without alewives [12, 13, 15–18].
Anadromous alewives migrate from salt water to spawn
in fresh water and reside in fresh water for approximately
six months per year. In contrast, landlocked alewives do
not leave freshwater [19]. In lakes with migratory anadro-
mous alewives, the zooplankton community shifts annu-
ally between being dominated by large-bodied organisms
in the spring and small-bodied organisms in the summer
[20]; in lakes with resident landlocked alewives, the zoo-
plankton remain small throughout the year because of
stable predation pressure [20].
Alewives have been landlocked in multiple lakes for the

past ∼ 300 years for multiple reasons including dam con-
struction [3, 12, 21]. They were observed in Lake Ontario

as early as 1880 [22], and were first recorded in Lake
Michigan in 1949 [23]. Today, landlocked alewives are
found in the Great Lakes and several of the Finger Lakes
of New York [22]. The rapid expansion of alewife popu-
lations in the upper Great Lakes disturbed the native fish
fauna, causing early summer die-offs of alewives around
Milwaukee, Wisconsin, and other cities on the Great
Lakes [22]. In Lakes Michigan, Huron, and Ontario, man-
agers are confronted with the challenge of maintain-
ing adequate numbers of alewives to support salmonine
stocks while reducing alewife abundance sufficiently to
permit the restoration of native fish species [24].
Landlocked alewives show a consistent pattern of life-

history divergence from anadromous alewives: landlocked
adult alewives have smaller bodies, narrower gapes,
smaller inter-gill-raker spacings, lower fecundity, and
reach maturity at an earlier age than anadromous alewives
[3, 18, 25]. Landlocked alewives also consume exclusively
pelagic prey and retain their pelagic niche throughout
their lives [26] whereas anadromous alewives consume
approximately equal proportions of littoral and pelagic
prey, and make an ontogenetic transition from the one
to the other [26]. These differences in prey preferences
across developmental stages are one potential cause of the
morphological differentiation between anadromous and
landlocked alewives [26, 27]. The differences in the envi-
ronmental requirements of landlocked and anadromous
populations are currently unknown [28].
Anadromous alewives range from North Carolina to

Newfoundland [29]. They spawn along the Atlantic coast
from late March through July, and spawning occurs at
progressively later dates in more northerly regions [28,
30]. During spawning, 3-to-4-year-old males are abun-
dant, while females dominate among older fish [28]. Males
mature earlier than females but have shorter lifespans [28].
Alewives are iteroparous, and females lay nearly all of their
eggs during spawning [28]. The alewife absorption stage
lasts for 2-5 days [31]. Juveniles typically rear in freshwater
for several months before migrating to the ocean between
June and November, and they mature at 3-6 years of age
[32, 33]. Alewives exhibit olfactory-sensory-driven hom-
ing behavior [34] but are not known to show any fidelity
to their natal river [35], and there is significant mixing
among alewife populations [36].
Alewives play important roles in freshwater and salt-

water ecosystems. They feed primarily on zooplankton;
the larvae begin to feed on small cladocerans and cope-
pods immediately after developing a functional mouth
[28]. They also forage for fish eggs and larvae, and cause
native planktivores to go into decline [37–41]. Large
alewives feed on small fish, insects, and crustaceans
[14, 42]. In turn, they are prey for several pisci-
vores, including bluefish, Pomatomus saltatrix, weakfish,
Cynoscion regalis, striped bass, Morone saxatilus, dusky



Kang and Thibert-Plante BMC Evolutionary Biology  (2017) 17:58 Page 3 of 13

shark, Carchahinus obscurus, spiny dogfish, Squalus
acanthias, salmon, Salmo salar, monkfish, Lophius gas-
trophysus, cod, Gadus morhua, pollock, Pollachius virens,
and silver hake,Merluccius bilinearis [43]. For stream food
webs, anadromous alewives are a potentially important
source of marine-derived nitrogen [44]. Because of their
ecological importance and low abundance, alewives were
declared a Species of Concern by the National Marine
Fisheries Service (NMFS) between 2005 and 2007. Har-
vest restrictions on alewives were imposed in all coastal
states, including Massachusetts, Rhode Island, Connecti-
cut, and North Carolina, from 2012 [33].

Modeling rapid morphological changes of alewives
To improve our understanding of rapid morphological
changes in fish, we developed an individual-based model
that simulates rapid changes in the body size and gill raker
count of a fish species in a hypothetical, size-structured
prey community. We adopted a functional trait approach
when developing the model; it explicitly describes the
relationships between prey size, fish body size, and fish
gill-raker count. Ecological power laws [45] were used to
define the relationships between the prey-predator body
mass ratio and trophic interactions [46–49], between body
mass and abundance [50], and between body mass and
metabolic rate [51].
Here we report the use of this model to address two

questions: (1) How does the impact of alewife populations
on prey feed back to impact alewife size and gill raker
number under several alternative scenarios? (2) Will the
trajectory of landlocked alewives’ morphological evolu-
tion change after 150–300 years in freshwater?

Methods
Model overview
We combined an individual-based model and difference
equations to describe alewives, their prey, and their inter-
actions. The time step of the simulations was one year,
and each simulation was allowed to run for 5000 simulated
years. Ten replicates of each individual simulation were
performed. Model parameter values were derived mainly
from empirical studies of alewives.
At each time step, each individual alewife either sur-

vives without developing, survives and develops, or dies.
Their body size increases stochastically (Algorithm (SI.1)).
As an individual grows, their resource requirements for
survival, foraging efficiency for different prey sizes, and
sexual maturation status changes. The survival of an
individual depends on their metabolic rate and foraging
ability, the level of resource competition, and prey abun-
dance. A Beverton-Holt function is used to describe the
effect of prey mass and fish metabolic rate on density-
dependent fish survival (Eq.(SI.16)). There are trade-offs
between fish body size and gill-raker spacing that affect

the fishes’ foraging, survival, and reproduction. Alewives
breed once a year and show iteroparity. The propor-
tion of newborn female offspring is set to 0.5 because
the sex ratio of alewives is approximately 1 : 1 [28].
Anadromous and landlocked alewife populations have
a polygynandrous (promiscuous) mating system; there-
fore, the two ecotypes do not typically co-exist in the
same lake [3]. Thus, in the model, each sexually mature
female randomly selects a sexually mature male for mating
(Algorithm (SI.2)).
The fish forage for different-sized prey; the available

prey is conceptualized as a set of size-structured clus-
ters that are described using difference equations. The
abundance of prey clusters is influenced by the competi-
tion within a prey cluster (i.e. a trophic level), the extent
of foraging for smaller-bodied prey clusters, the preda-
tion by larger-bodied prey clusters, and foraging by the
alewives (Fig. 1).
The following subsections outline the model’s core pro-

cesses. Additional details of the model are presented in
Additional file 1: Supporting information (SI) I, while
Additional file 1: Supporting information II provides
a list of symbols used in this work and the default
input parameter values. We used local sensitivity anal-
yses to determine how uncertainty in the model’s input
parameter values affected its outputs. The parameter
values used in these local sensitivity analyses are pre-
sented in Additional file 1: Supporting information II.
The default input parameter values were used at all
times in the local sensitivity analyses except where stated
otherwise.

Fig. 1 Ecological interactions in the model. A solid black arrow from A
to B indicates foraging for prey B by predator A. A dashed black arrow
from A to B indicates an increase in the population growth of predator
B foraging for prey A. A solid grey arrow indicates competition
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Alewife genetics
Alewives are sexually reproducing diploid organisms. Gill
raker number is a heritable trait in most fishes [52, 53].
In our model, the first and second sets of unlinked bial-
lelic quantitative trait loci (QTLs) ({0, 1}) influence the
body size and the gill-raker count, respectively. A trait is
determined by the relative abundance of allele 1 to the
total number of alleles in the loci controlling the trait. The
default number of loci for a trait is eight, and the mutation
rate for alleles is 10−5.

Alewife body size
A stochastic, density-dependent extension of the von
Bertalanffy growth function [54] is used to compute the
increase in each individual’s body size over each time
step. In general, the model assumes that growth is depen-
dent on the growth-affecting QTLs and the environment
(Eq.(SI.10)). However, to facilitate analysis of the model’s
default behavior, we only simulated the genetic effect on
growth. With environmental effects excluded, the param-
eter bA (default value = 0.25) controls the magnitude
of each growth-facilitating allele’s effect. We studied the
effect of bA on alewife morphological evolution by per-
forming a local sensitivity analysis. The default parameter
values for the growth process set the average body length
of the largest 5-year-old females to approximately the
average total body length of adults from three anadro-
mous populations (= 260mm) and the average body
length of the smallest 2-year-old females to a value some-
what lower than the average total body length of adults
from three landlocked populations (= 97mm)[3]. The
coefficient of variation for growth, bcv (default value =
0.01)(Eq.(SI.8)), controls the individual stochasticity of
growth. We tested multiple values (0.001, 0.01, 0.1, 0.2) of
bcv in a local sensitivity analysis to study the effect of the
individual stochasticity of growth on fish morphological
evolution.
Some landlocked alewives may spawn at the age of 2

years [55], but 3-to-10-year-old adults dominate anadro-
mous alewife spawning grounds [28, 32, 56, 57]. We
therefore assumed that growth-facilitating alleles delayed
sexual maturation. Additionally, fertility in many fish
species increases with body size [58, 59]. Therefore, in
our model, the mean number of offspring produced by a
female increases with the female’s body mass (Eq.(SI.30)).
Body size and prey size are positively correlated in many

fish species [60–65], including alewives [66]. Accordingly,
in our model, an individual’s body size affects the effi-
ciency of their foraging for large prey, u. This relationship
is described by Eq. (1).

ui(t) = 0.01
[
10−5.289 (

bOi(t)3.063
)]

(1)

where bO is body length (mm), which is used to calcu-
late the available prey mass for an individual (Eq.(SI.15));

10−5.289 and 3.063 are the constant and exponent used
to convert body length (mm) to body mass (g), respec-
tively [67]; 0.01 is the default value of the multiplier used
to calculate the efficiency of alewives’ foraging for large
prey based on body mass. This parameter also regulates
the ability of anadromous alewives that are at least one
year old to forage for fish eggs (0.1 − 0.2g). Gape size was
assumed to be allometrically related to body mass.

Gill raker
The role of a gill raker apparatus is related to prey reten-
tion efficiency [68–70]. Small inter-gill-raker spacings
limit the ability of small prey to escape [4], and cross-
flow filtering capacity increases with the gill-raker count
[4]. For a given number of gill rakers, the inter-gill-raker
spacing increases with body size [3, 71, 72]. Moreover, for
alewives, the probability of capturing small prey increases
as the total body length decreases [71]. Equation (2)
describes how the gill-raker spacing, l (which controls
the efficiency of foraging for small prey), decreases as the
gill-raker count increases and/or body size decreases.

li(t) = lMn+(lMx−lMn)

(
1 − nmli

nll np

) [
wi(t) − wMn
wMx − wMn

]eb

(2)

where nml is the number of alleles promoting an increased
gill-raker count, nll is the number of loci controlling gill-
raker count, np is the number of alleles in a locus, and
eb determines the effect of body size on gill-raker spac-
ing; the maximum and minimum gill-raker spacings are
lMx and lMn, respectively. The default value for lMx is
0.02, which is twice the body mass of large zooplankton
(= 0.01g). The default value for lMn is 0.001, which is
10% of the body mass of large zooplankton. The maxi-
mum and minimum fish body masses are wMx and wMn,
respectively.wMx andwMnwere derived from the asymp-
totic body length of anadromous alewives, bMx, and the
minimum body length, bMn (Eq.(SI.12)), using the alewife
body-length-body-mass relationship (body mass (g) =
10−5.289 [body length (mm) ]3.063) [67]. The default value
for bMx is set to 273.684mm in order to make the average
body length of the largest 5-year-old females approxi-
mately equal to the average total body length of adults
from three anadromous populations (= 260mm) [3].
Low gill-raker spacing values could reduce the efficiency

of foraging for large prey because closely-spaced gill rak-
ers aremore prone to becoming clogged by large prey than
more widely spaced rakers. This reduction in foraging
efficiency, pf , is modeled by Eq. (3).

pf (k, l, lp) =
⎧
⎨

⎩

(
l
k

)lp
if k > l

1 if k ≤ l
(3)
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where k is prey body mass and lp (default value= 0.5) con-
trols the decrease in the efficiency of foraging for large
prey. Because of the lack of empirical data on lp, we per-
formed a local sensitivity analysis to study the effect of lp
on the evolution of fishmorphology.We acknowledge that
the reduced efficiency can be attributed to reduced effi-
ciency of the double pump suction mechanism that allows
alewives to pull prey into the mouth while pumping the
incoming water out through the opercular openings [18].

Alewives’ foraging
Equation (4) defines the effects of fish body size and gill-
raker spacing on alewives’ foraging for different-sized prey
(Fig. 2).

fe(k,u, l, fs, lp) =
⎧
⎨

⎩
pf(k,l,lp)cF(u,l, fs)

[
1

1+e−fs
(
log10

k
u
)

][
1− 1

1+e−fs
(
log10

k
l
)

]
ifu> l

0 ifu≤ l
(4)

where fe is foraging efficiency; k is prey body mass; the
first and second terms in square brackets describe the
decrease in the efficiency of foraging for large and small
prey, respectively; pf describes the decrease in the effi-
ciency of foraging for large prey due to narrow gill-raker
spacing (Eq. (3)); and fs describes the decrease in the effi-
ciency of foraging for very large or very small prey. A high

Fig. 2 The foraging efficiency (fe) function. u (= 0.1) affected the
efficiency of foraging for large prey. l (= 0.001) affected the efficiency
of foraging for small prey. lp controlled the effect of gill-raker spacing
on foraging for large prey. fs controlled the decrease in the efficiency
of foraging for very large or very small prey

fs value indicates a rapid decrease in the efficiency of for-
aging for very large or very small prey. The variables u and
l represent gape size and gill-raker spacing, respectively; a
foraging efficiency of 0.5 is achieved when pf (k, l, lp) = 1
and u > l. When there is no decrease in the efficiency
of foraging for large prey due to narrow gill-raker spac-
ing (pf (k, l, 0) = 1), cF set fish foraging efficiency to the
maximum (=1) at log10u+log10l

2 (Eq. (5)).

cF(u, l, fs) =
[
2 + e−fs(τ−log10 l) + e−fs(τ−log10 u)

e−fs(τ−log10 l)

]

,

τ = log10 u + log10 l
2

(5)

The model describes the type II functional response
to alewives’ foraging (Eq.(SI.24)). The effect of the type
II functional response on the morphological evolution
of fish was studied by performing a sensitivity analysis
on cH , which determines the handling time. The default
cH value was 0.1, which reduces the foraging efficiency
by 50% when the prey abundance is 10% of that pre-
dicted by a body mass-abundance relationship derived
from ecological power laws (Eq. (8)) [45, 50].
Traditional foraging theories predict that a prey species

providing a better net energy return rate should be cho-
sen more often by a predator species [73–76], which is
consistent with the observation that alewives interchange-
ably switch between filter-feeding and particulate-feeding
modes as zooplankton size and density change [77]. In this
model, an individual spends more foraging time targeting
the prey type with the highest total mass (=abundance ×
body mass) (Eq.(SI.27)).

Alewives’ prey (size-structured prey clusters)
The alewives’ prey was divided into multiple size-
structured clusters located at different trophic positions.
Two or three prey clusters were simulated, with body
masses ranging from 10−3g to 9.5g. No empirical data
were available to determine the number of prey clus-
ters. When more than three prey clusters were simulated
using the default parameter settings, one or more prey
clusters went extinct. The representative body masses for
the three-cluster setting are 0.01g, corresponding to the
body mass of large zooplankton; 0.224g, corresponding
to the mass of a large fish egg; and 5g, corresponding to
the body mass of small organisms foraging for zooplank-
ton and fish eggs. The representative body masses for
the two-cluster setting were 0.01g and 0.224g. For sim-
plicity, we assumed that the alewives’ prey was asexually-
reproducing diploid organisms whose body mass was
determined by an unlinked-biallelic QTL ({0, 1}). The
default number of loci controlling prey body mass is 10.
Therefore, each prey cluster contains 21 discrete body
size classes, which are intended to approximate a body
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size spectrum within each cluster while imposing only a
modest increase in computation time. The mutation rate
of the allele affecting prey body size is set to 10−5. This
food web modeling approach differs from conventional
food web modeling approaches that assume a continuous
size distribution of species because we aimed to study the
contemporary evolution of fish in food webs governed by
currently unknown mechanisms.
Prey in a cluster was assumed to (1) forage for smaller-

bodied clusters (prey), (2) be consumed by larger-bodied
clusters (predators) or alewives, and (3) compete with
organisms in the same cluster. These trophic interac-
tions and within-trophic competitions are described by
the discrete Lotka-Volterra equation (Eq. (6)) [78, 79].

rtr,rc(t) = 1 + rIr,rc + pIr,rc(t)
1 + sIr(t) + nIr,rc(t) + fIr,rc(t)

(6)

where rt is the prey abundance before the initiation of
dynamic processes within a prey cluster, which is calcu-
lated using Eq. (SI.44), and rI is the intrinsic growth rate.
rI is 1 for the prey cluster with the smallest representa-
tive body mass, and 0 for other prey clusters. r and rc are
the indices for a prey cluster and a body size class, respec-
tively. sI, nI, pI, and fI describe the effect of competition
within a cluster, the effect of prey on predators, the effect
of predators on prey, and the effect of fish foraging for
prey, respectively. To resolve potential problems relating
to the increase in the number of model parameters caused
by increasing the number of trophic levels, we used allo-
metric relationships derived from ecological power laws
(Eq. (7), Eq. (10), Eq. (12)) to set the parameter values for
the discrete Lotka-Volterra equation.

Within-trophic competition among prey
The effect of competition within a prey cluster on prey
abundance, sI, is given by Eq. (7).

sIr(t) = 1
rar

∑

rc
rscr,rc(t − 1) (7)

rar = cA(rMur)−eA (8)

where ra is the prey abundance predicted by the body-
mass-abundance relationship, rsc is the prey abundance
after computing the dynamics within the prey cluster
using Eq. (SI.44), cA (default value = 5.0 × 106) is a con-
stant for body mass, rMu is the representative body mass
of a prey cluster, and eA is an exponent for body mass.
The value of eA has been estimated to be 0.84 based on
data gathered at Tuesday Lake in 1984 [80], 0.75 based
on data gathered at Tuesday Lake in 1986 [80, 81], and
1.1 based on data gathered at the Ythan Estuary [80].
The default value for eA was set to 0.75, and the effect
of eA on alewife morphological evolution was studied by
performing a local sensitivity analysis.

Trophic interactions
For this model, the prey community represents multiple
clusters of organisms. Prey organisms forage for organ-
isms in smaller-bodied prey clusters, and they are for-
aged by organisms in larger-bodied prey clusters. Thus,
the prey community for this model resembles a food
web, which contains multiple paths of energy flow. The
strength of the interaction between prey clusters is treated
as a function of the predator-prey body mass ratio
[46–49]. Equation (9) defines nI, the effect of predation
by a larger-bodied prey cluster (predators) on a smaller-
bodied prey cluster (prey).

nIr,rc(t)=
∑

rk
rk �=r

[

fnc
((

∑

rc
rscrk,rc(t − 1)

)

, inr,r ,
cHrk
rar

, bfr

)]

(9)

where fnc (Eq.(SI.25)) is a functional response and cH
determines handling time. The default value for cH was
set at 0.1 to reduce foraging efficiency by 50% when the
prey abundance was 10% of that predicted by the body-
mass-abundance relationship (Eq. (8)). bf is an exponent
for prey abundance. Its default value was set to 1 because
we assumed a type II functional response in this work. in
was a scaling factor for the effect of predation by a larger-
bodied prey cluster on a smaller-bodied prey cluster. We
used Eq. (10) to calculate in.

inr1,r2 =
⎧
⎨

⎩
ci

(
rMur1
rMur2

)eI
if rMur2 ≥ rMur1

0 if rMur2 < rMur1
(10)

where r1 and r2 are indices for a smaller-bodied and a
larger-bodied prey cluster, respectively; ci (default value =
2.5 × 10−6) is a scaling factor for the predator-prey body
mass ratio; and eI is an exponent for the predator-prey
body mass ratio. The default value for eI was 0.25, which
is the value obtained by using an allometric scaling rela-
tionship to approximate the basal metabolic rate per unit
body mass [46, 47, 49].
The effect of the alewives’ foraging for prey was mod-

eled using Eq. (11).

fIr,rc(t) =
∑ [

fcr,sncr,rc(t)cn
]

(11)

fcr = cn ci
(
rMur
wf

)eI
(12)

The number of size classes in a cluster, cn, is used to scale
fI such that the per capita effect of foraging for a size
class is equal to fc if an individual spends equal amounts
of its foraging time targeting each body size class within
the prey cluster that provides the maximum foraging effi-
ciency. The representative body mass for alewives, wf (=
30.27g), is the mean body mass of female alewives of the
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largest genotype at the stable-stage distribution; it is cal-
culated from the Leslie matrix shown in Additional file 1:
Supporting information I. nc is the number of individuals
foraging for prey given by Eq.(SI.43).
Equation (13) describes the effect of smaller-bodied

prey clusters on larger-bodied prey.

pIr,rc(t) =
∑

rk
rk �=r

[

iprk,r
∑

rc
rscrk,rc(t − 1)

]

(13)

ipr2,r1 = pc
fnc

(
∑

rc
rscr1,rc(t − 1), inr1,r2, cHr1

rar1 , bfr1
)

∑

rc
rscr1,rc(t − 1)

(14)

where r1 and r2 are indices for a smaller-bodied prey
cluster and a larger-bodied prey cluster, respectively; pc
(default value = 0.01) was a scaling factor for the predator-
prey body mass ratio.

Initial conditions
During the first 1000 simulated years, only prey were
included in the simulation in order to establish stable
size-structured prey clusters. Adult alewives (500 males
and 500 females) were then introduced into the ecosys-
tem on year 1001. Using the default parameter settings,
during the period when only prey was present, the abun-
dance of prey clusters converged to positive numbers.
We used the body-mass-abundance relationship (Eq. (8))
to set the prey abundance for the initial time step. The
initial abundance distribution of body mass classes in a
prey cluster was calculated using the normal distribution
(Eq.(SI.46)). The alleles for alewives in the initial pop-
ulation were randomly selected based on known allele
frequencies. The default value for the initial frequency
of the growth-improving allele (P(A)t=0) was 0.99, while
that for the frequency of the gill-raker count-increasing
allele (P(B)t=0) was 0.01. These default parameter settings
correspond to a scenario in which a population of anadro-
mous alewives with genetic variation typical of existing
anadromous alewives suddenly becomes landlocked. We
performed a local sensitivity analysis to study the effect of
the initial allele frequencies on the morphological evolu-
tion of the fish.

Results
Alewife morphological changes before and after the first
250 years
For the first 150–250 years after the alewives were intro-
duced into the ecosystems, their growth (P(A)) decreased
monotonically and their gill-raker counts (P(B)) increased

monotonically under most combinations of trophic struc-
ture configuration (2 or 3 prey clusters), within-trophic
competition level (eA), and trophic interactions (eI). After
the first 150–250 years, however, the alewives exhibited
divergent evolutionary trajectories under different trophic
settings, and some evolutionary trajectories reversed
(Fig. 3). In general, after the first 1000 years, the directions
of evolutionary changes in the body size and gill raker
count were similar to those during years 250–1000 after
introduction. Nevertheless, under certain conditions, the
directions of evolutionary changes after the first ∼ 1000
years changed noticeably from those during years 250–
1000. Such deviations were observed when: (1) within-
trophic competition was weak (eA = 0.75), (2) trophic
interactions were strong (eI = 0.25), (3) reductions in
body size substantially increased the alewives’ success at
foraging for small prey (eb = 0.125), and (4) narrow
gill-raker spacings had moderate negative effects on the
alewives’ foraging for large prey (lp = 0.5).
Under these conditions, the evolutionary trajectory for

one morphological trait reversed during the first 150–
250 years, and that for the other morphological trait
reversed by approximately year 1000. These results show
that knowledge of the food web’s structure and the rela-
tionships between organisms at different trophic levels is
essential for predicting the body size and gill-raker count
of landlocked alewives 250 years after their introduction.
Over the first 250 years, there were three clear ways

in which changes in the alewives’ body size, gill raker
spacing, and gill raker count affected their morphological
evolutionary trajectory. First, in cases where reductions in
the alewives’ body size substantially improved their for-
aging for small prey (eb ≤ 0.25), their gill-raker count
increased ((P(B)t=300−P(B)t=0) > 0.1) (Fig. 4). Second, as
the effect size of the allele controlling the alewives’ growth
decreased (i.e. as bA increased), their gill-raker count also
increased except in cases where a very small decrease in
body size substantially improved their foraging for small
prey (eb = 0). Third, the rate of change of the gill-raker
count increased as small gill-raker spacings became less of
a barrier to successful foraging for large prey. For exam-
ple, there was a monotonic decrease in mean growth and a
monotonic increase in the mean gill-raker count over the
first 150–250 years when (1) reductions in alewife body
size substantially improved their foraging for small prey
(eb ≤ 0.25) and (2) narrow gill-raker spacings had no or
only moderate negative effects on foraging for large prey
(lp = 0 or 0.5). Nevertheless, these trends in the evolu-
tion of body size and gill-raker count were not observed in
cases where (1) there were three prey clusters, (2) trophic
interactions were strong (eI = 0.25), (3) within-trophic
competition was weak (eA = 0.75), and (4) the efficiency
of foraging for small prey was substantially increased by
very small reductions in alewife body size (eb = 0).
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Fig. 3 The effect of within-trophic competition and trophic
interactions on alewife morphological evolution and prey abundance
in ecosystems with two (a) or three (b) prey clusters. A low eA value
indicates a low intensity of within-trophic competition. A low eI value
denotes strong trophic interactions. ¯P(A) was the mean frequency of
the allele improving growth. ¯P(B) was the mean frequency of the
allele increasing alewives’ gill-raker count. Reductions in alewives’
body size substantially improved the efficiency of their foraging for
small prey (eb = 0.125). Narrow gill-raker spacings did not reduce the
efficiency of the alewives’ foraging for large prey (lp = 0). Allele
frequencies were recorded every 150 years in this figure

Alewives’ foraging efficiency for very large or very small
prey
The gill-raker number increased only in cases where the
decrease in the alewives’ foraging efficiency for very large
or very small prey was moderate (fs = 10) or fast (fs =
20). For the first 150 years, the decreases in the alewives’
growth and the increases in their gill-raker numbers were
greater when fs = 20 than when fs = 10 (Additional file 1:
Figure SI.3.1).

The functional response
Changing the handling time in the type II functional
response (ht = 0, 0.05, 0.1, 0.25) did not appreciably affect
the evolutionary trajectory under most of the studied
trophic settings. However, the handling time did affect the
evolution of the alewives’ body size and gill-raker number
when (1) there were three prey clusters, (2) within-trophic
competition was weak (eA = 0.75), (3) trophic inter-
actions were strong (eI = 0.25), (4) reductions in the
alewives’ body size led to substantial improvements in
their foraging for small prey (eb = 0.125), and (5) nar-
row gill-raker spacings had a moderate negative effect on
the alewives’ foraging for large prey (lp = 0.5) (Additional
file 1: Figure SI.3.2).

Stochasticity in fish morphological evolution
The standard deviations of allele frequencies were gener-
ally small (σP(A) < 0.05 & σP(B) < 0.05) for the first 300
years when reductions in the alewives’ body size moder-
ately improved their foraging for small prey (eb >= 0.5)
or when very small reductions in their body size substan-
tially improved their foraging for small prey (eb = 0).
Nonetheless, in other cases the standard deviations of
allele frequencies over the first 300 years were above 0.1.
They continued increasing after the first 300 years under
several trophic settings when body size reductions sub-
stantially improved the alewives’ foraging for small prey
(eb = 0.125 or 0.25) and narrow gill-raker spacings had no
effect or only moderate negative effects on their foraging
for large prey (lp = 0 or 0.5) (Fig. 5).
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Fig. 4 Alewife morphological evolution affected by a the effect of
body size on foraging for small prey and b the effect of clogged gill
rakers on foraging for large prey. A low eb value indicated that
alewives’ small body size substantially improved the efficiency of their
foraging for small prey. A high lp value indicated that alewives’ small
gill-raker spacing greatly undermine the efficiency of their foraging
for large prey. The intensity of within-trophic competitions was low
(eA = 0.75). μP(A) was the mean frequency of the allele improving
alewives’ growth. ¯P(B) was the mean frequency of the allele
increasing alewives’ gill-raker number. Trophic interaction were
strong (eI = 0.25). Alewives’ small gill-raker spacing moderately
undermined the efficiency of their foraging for large prey (lp = 0.5).
Allele frequencies were recorded every 150 years in this figure

Individual stochasticity of growth
Different degrees of individual stochasticity of alewife
growth produced similar morphological evolutionary

Fig. 5 Stochasticity in alewife morphological evolution. A low eb
value indicated that alewives’ small body size substantially improved
the efficiency of their foraging for small prey. θP(A) was the standard
deviation of the frequency of the allele improving alewives’ growth.
θP(B) was the standard deviation of the frequency of the allele
increasing alewives’ gill-raker number. The intensity of within-trophic
competitions was moderate (eA = 1). Trophic interaction were
moderate (eI = 0.4). Alewives’ small gill-raker spacing did not
undermine the efficiency of their foraging for large prey (lp = 0).
There were three prey clusters. Allele frequencies were recorded
every 150 years in this figure

trajectories when there were two prey clusters. In con-
trast, different degrees of individual growth stochas-
ticity resulted in multiple evolutionary morphological
trajectories after the first 150–250 years under most
trophic settings featuring three prey clusters. Evolu-
tionary trajectories simulated under high individual
growth stochasticity (bcv = 0.2) differed from those
under intermediate-or-low individual growth stochastic-
ity (bcv = 0.001, 0.01, 0.1) when there were weak or
moderate levels of within-trophic competition (eA =
0.75 or 1) and strong trophic interactions (eI = 0.25)
(Additional file 1: Figure SI.3.3). In addition, evolutionary
trajectories simulated under high or low individual growth
stochasticity (bcv = 0.2 or 0.001) differed from those sim-
ulated under intermediate individual growth stochasticity
(bcv = 0.01, 0.1) when there was strong within-trophic
competition (eA = 1.25) and weak trophic interactions
(eI = 0.55).

Initial morphology of alewives
For the first 150–250 years, the alewives’ body size
decreased and their gill-raker number increased when
a majority of the initially landlocked alewives had large
bodies (P(A)t=0 ≥ 0.99) and a low gill-raker counts
(P(B)t=0 ≤ 0.01), regardless of the initial level of genetic
variation. After the first 150–250 years, the evolution-
ary trajectories simulated under a high initial genetic
variation ((P(A)t=0 = 0.99,P(B)t=0 = 0.01) differed
from those simulated under low initial genetic variation
(P(A)t=0 = 1,P(B)t=0 = 0; P(A)t=0 = 0.9999,P(B)t=0 =
0.0001; P(A)t=0 = 0.999,P(B)t=0 = 0.001) (Fig. 6).
Under most trophic settings, the two different initial
allele frequency combinations (large-body-and-low-gill-
raker-number, i.e. P(A)t=0 ≥ 0.99, P(B)t=0 ≤ 0.01,
and small-body-and-high-gill-raker-count, i.e. P(A)t=0 ≥
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Fig. 6 The effect of the initial allele frequencies on alewife
morphological evolution. P(A)t=0 was the initial frequency of the
allele improving alewives’ growth. P(B)t=0 was the initial frequency of
the allele increasing alewives’ gill-raker number. ¯P(A) was the mean
frequency of the allele improving alewives’ growth. ¯P(B) was the
mean frequency of the allele increasing alewives’ gill-raker number.
The intensity of within-trophic competitions was low (eA = 0.75).
Trophic interaction were strong (eI = 0.25). The reduction in alewives’
body size substantially improved the efficiency of their foraging for
small prey (eb = 0.125). Alewives’ small gill-raker spacing moderately
undermined the efficiency of their foraging for large prey (lp = 0.5).
Allele frequencies were recorded every 1000 years in this figure

0.01, P(B)t=0 ≤ 0.99) resulted in different allele fre-
quencies within 5000 years. The two sets of initial allele
frequency settings, however, resulted in similar allele fre-
quencies (P(A)t=0 ∼ 0.8,P(B)t=0 ∼ 0.4) after 5000 years
when there were three prey clusters, strong within-trophic
competition (eA = 1.25), and strong trophic interactions
(eI = 0.25).

Discussion
Changes in low trophic levels
A reasonable description of multiple, low-trophic-level
interactions is indispensable for inferring the abundance
and morphology of prey species, which can strongly
affect the evolution of fish. This is particularly impor-
tant when considering small and isolated environments
because fish can induce rapid low-trophic-level changes
in such contexts. For example, in addition to the well-
established changes in zooplankton communities caused
by the introduction of alewives, low-trophic-level changes
caused by grass carp, Ctenopharyngodon idella, silver

carp, Hypophthalmichthys molitrix, and bighead carp,
Hypophthalmichthys nobilis, at Lake Donghu in China
have been extensively documented [82]. Grass carp were
heavily stocked in the lake during the late 1960s and
1970s, and silver carp and bighead carp have been stocked
since the 1970s [83]. The stocked fish reduced the den-
sity of Daphnia from 26.1–35.0 ind./L in 1971–1986 to
0.5–1.3 ind./L in 1987–1996. Moreover, the annual aver-
age body length of important prey of silver and big-
head carp decreased over this period - from 1.22 mm
(1980) to 0.65mm(1988) in the case of Daphnia hyalina,
from 1.33mm(1980) to 0.78mm (1987) for Daphnia car-
inata, and from 0.81mm to 0.61mm (1992) for Daph-
nia brachyurum [84–88]. A decrease in the densities of
Daphnia, rotifers, and protozoans relaxed the competi-
tion among small zooplankton, leading to an increase
in protozoan biomass [82]. The total annual average
densities of zooplankton observed in the 1990s were
between 15 and 20 times greater than those recorded
in the 1960s, mainly because of this increase in pro-
tozoan biomass. The protozoan biomass increase con-
tributed to an increase in the mean annual fish standing
crop, from 95.3 kg/ha in the 1960s to 945.1 kg/ha
in the 1990s. In this study, alewives were found to
affect the abundance and morphology of their prey,
which in turn changed the abundance and morphology
of the alewives. Complex low-trophic-level interactions
can thus alter the abundance and characteristics of
fish species. Consequently, it is not sufficient for fish-
eries management models to merely describe a few
predator-prey interactions; a muchmore detailed descrip-
tion of trophic interactions is required. More accu-
rate and reliable predictions of low-trophic-level changes
will improve not only the prediction of fish mor-
phology and abundance but also the management of
aquatic ecosystems.

Ontogenetic changes, trophic interactions, and
competition
Selection forces can act differently on fish at different life
stages (or ages), and they can change over time. For exam-
ple, individuals at different life stages (or ages) may forage
for different-sized prey, and the strength of competition
may differ between life stages. For this reason, we explic-
itly modeled the ontogenetic changes in the alewives’
foraging characteristics. Describing ontogenetic changes
complicated the model but improved the description of
resource competition among fish and the representation
of trophic interactions.

Trade-offs betweenmorphological traits
Instead of assuming abstract, theoretical fitness trade-
offs, the model explicitly describes trade-offs between
body size and gill raker numbers by reflecting findings
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from empirical studies and potential relationships derived
from the mechanical properties of foraging traits.
Although this modeling approach increased the number
of model parameters, it facilitated the identification of
knowledge gaps and model parameterization. In the final
model, the body size effect on the gill-raker function (eb)
and the small gill raker effect on alewives’ foraging for
large-bodied prey (lp) determine whether the gill-raker
number increases during the first 150–250 years. These
two properties of alewives’ morphology are trade-offs
related to their foraging for different prey types, which can
cause divergent natural selection between and within pop-
ulations exploiting different prey [89–92]. Although both
parameters are important for predicting the morphologi-
cal evolution of alewives, they have not been empirically
estimated. Detailed empirical studies on fish foraging will
be needed to provide robust parameter estimates and
better explanations of the ecological processes related to
foraging in fish; once obtained, this information could be
used to further improve the prediction of morphological
evolution in fish.

Limitations of this model
This study focused on the effects of species at low trophic
levels (prey of alewives) on alewife morphological evolu-
tion, and the model does not account for all of the factors
that could potentially affect the evolution of alewife body
size and gill raker numbers. In particular, to limit com-
plexity, it omits any description of alewives’ predators,
even though alewives are common prey for several fish
species [35, 93]. In addition, environmental effects on
alewives’ growth and sexual maturation were excluded,
although they could be accounted for by adjusting the
values of relevant parameters such as ce. Further studies
using this model could be conducted to explore the evo-
lution of fish morphology under different environmental
conditions and in the presence of different environmental
effects on fish growth and sexual maturation.

Conclusions
Simulations using a newly developed model showed that
alewives’ gill-raker counts only increased during the
first 150–250 years after their introduction into a lake
if reductions in their body size substantially improved
their foraging for small prey. In addition, their gill-
raker counts increased to a greater degree as narrow
gill-raker spacings became less of a barrier to forag-
ing for large prey. Under most trophic settings, the
alewives’ body sizes decreased monotonically over the
first 150–250 years, while their gill-raker counts increased
monotonically. After the first 150–250 years, however,
the alewives exhibited multiple evolutionary trajectories
under different trophic settings; in some cases, the evo-
lutionary trajectories established over the first 150–250

years were subsequently reversed. This study suggests
that the current morphology of recently (∼ 300 years)-
landlocked alewives may not represent an evolutionarily
stable state.
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