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Abstract

Background: Genome degradation of host-restricted mutualistic endosymbionts has been attributed to inactivating
mutations and genetic drift while genes coding for host-relevant functions are conserved by purifying selection.
Unlike their free-living relatives, the metabolism of mutualistic endosymbionts and endosymbiont-originated
organelles is specialized in the production of metabolites which are released to the host. This specialization
suggests that natural selection crafted these metabolic adaptations. In this work, we analyzed the evolution of the
metabolism of the chromatophore of Paulinella chromatophora by in silico modeling. We asked whether genome
reduction is driven by metabolic engineering strategies resulted from the interaction with the host. As its widely
known, the loss of enzyme coding genes leads to metabolic network restructuring sometimes improving the
production rates. In this case, the production rate of reduced-carbon in the metabolism of the chromatophore.

Results: We reconstructed the metabolic networks of the chromatophore of P. chromatophora CCAC 0185 and a
close free-living relative, the cyanobacterium Synechococcus sp. WH 5701. We found that the evolution of free-living
to host-restricted lifestyle rendered a fragile metabolic network where >80% of genes in the chromatophore are
essential for metabolic functionality. Despite the lack of experimental information, the metabolic reconstruction of
the chromatophore suggests that the host provides several metabolites to the endosymbiont. By using these
metabolites as intracellular conditions, in silico simulations of genome evolution by gene lose recover with 77%
accuracy the actual metabolic gene content of the chromatophore. Also, the metabolic model of the chromatophore
allowed us to predict by flux balance analysis a maximum rate of reduced-carbon released by the endosymbiont to
the host. By inspecting the central metabolism of the chromatophore and the free-living cyanobacteria we found that
by improvements in the gluconeogenic pathway the metabolism of the endosymbiont uses more efficiently the
carbon source for reduced-carbon production. In addition, our in silico simulations of the evolutionary process leading
to the reduced metabolic network of the chromatophore showed that the predicted rate of released reduced-carbon
is obtained in less than 5% of the times under a process guided by random gene deletion and genetic drift.

We interpret previous findings as evidence that natural selection at holobiont level shaped the rate at which
reduced-carbon is exported to the host. Finally, our model also predicts that the ABC phosphate transporter
(pstSACB) which is conserved in the genome of the chromatophore of P. chromatophora strain CCAC 0185 is a
necessary component to release reduced-carbon molecules to the host.
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Conclusion: Our evolutionary analysis suggests that in the case of Paulinella chromatophora natural selection at
the holobiont level played a prominent role in shaping the metabolic specialization of the chromatophore. We
propose that natural selection acted as a “metabolic engineer” by favoring metabolic restructurings that led to an

increased release of reduced-carbon to the host.
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Background

Paulinella chromatophora is an amoeba dispensed with
phototrophic nutrition that contains blue-green photo-
synthetic organelles of cyanobacterial origin termed
chromatophores [1, 2]. These novel organelles have a
monophyletic origin in different strains of photosyn-
thetic Paulinella that have been described [3] and were
acquired through a primary endosymbiotic event about
~90 to 140 Mya [2-6].

Chromatophore genome sequencing from two strains
of P. chromatophora (FK 01 [7] and CCAC 0185 [5]),
revealed a size of 0.977 and 1.02 Mbp, respectively.
This represents about 1/3 of the genome size of Syne-
chococcus sp. WH 5701, the closest free-living relative
cyanobacterium with a sequenced genome. Synechococ-
cus sp. WH 5701 has a genome of ~3 Mbp and 3346
protein-coding genes [5]. It indicates that the chro-
matophore evolved by genome reduction. However,
genome reduction in P. chromatophora is not as
extreme as in plastids which rarely exceed 200 Kbp [2].

Chromatophores are genetically integrated with their
host. More than 30 nuclear encoded genes of chromato-
phore origin have been identified [7, 8]. And some of the
protein products coded by these genes are imported
back into the chromatophore and participate in the
photosynthetic apparatus [9]. Accordingly, chromato-
phores have been described as plastids in the making.

P. chromatophora nutrition relies on the reduced-
carbon photosynthetically assimilated by the chromato-
phore [10]. This endosymbiotic-nutrient dependency
has been observed in other organisms such as aphids
and tsetse flies housing prokaryotic endosymbionts
[11]. Particularly for aphids, host essential amino acids
are provided by an endosymbiotic bacterium called
Buchnera aphidicola [12]. Sequencing of the genome of
B. aphidicola revealed a high degree of genetic degrad-
ation, while genes necessary for the syntrophic relation-
ship with its host have been retained [12].

Prokaryotic endosymbionts evolve small genomes
mainly by the combined action of genetic drift and
negative selection [13-16]. In host-restricted condi-
tions, the endosymbiont experiences a lack of recom-
bination and horizontal gene transfer, as well as
recurrent population bottlenecks lowering its effective
population size (N,) and a concomitant relaxation of

natural selection [15-17]. The combined action of these
factors allows the accumulation of slightly deleterious
mutations through a process called Muller’s ratchet [14,
17]. As a consequence, many genes become pseudo-
genes and are subsequently lost. In addition, selection
at holobiont level by mechanisms like “partner fidelity
feedback” have been proposed to promote the evolution
of mutualistic interactions [18].

Something that should be considered is that, differing
from free-living relatives, the metabolism of mutualistic
endosymbionts is specialized in the production of me-
tabolites that are released to their host as nutrients [19,
20]. This metabolic specialization is the consequence of
metabolic restructuring caused by gene loss and genome
reduction [20]. Resulting reduced genomes code for
fewer genes, however, they are more integrated to the
host. The extreme cases are organelles of endosymbiotic
origin such as chloroplasts [21]. Therefore, if mutualistic
endosymbionts show metabolic adaptations to provide
nutrients to their hosts [19, 20], natural selection must
have participated in the evolution of these systems.

During early stages of organellogenesis, the cyanobac-
teria that evolved into the chromatophore, had access to
metabolites provided by the host. It is likely that the
availability these metabolites render of some metabolic
routes dispensable in the endosymbiont. The loss of
these biosynthetic pathways in the endosymbiont led to
restructurings and changes in the remaining metabolic
fluxes. Taking into consideration all these modifications
experienced by the chromatophore and the nutrient
dependency of the holobiont for the photosynthetic
function of the chromatophore, we made the analogy of
natural selection acting as a “metabolic engineer” direct-
ing the strategies for the metabolic specialization of the
chromatophore. In general, the objective of metabolic
engineering is the directed improvement of metabolic
capabilities through the deletion of metabolic genes or
the introduction of new ones [22]. By using these strat-
egies, microorganisms have been engineered for the
improvement of the yield and the production and con-
sumption rates of desired metabolites. For instance, for
the of 1-butanol production in cyanobacteria [23], many
more examples can be found elsewhere [24, 25].

In this work, we reconstructed the genome based
metabolic models of the chromatophore of Paulinella
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chromatophora and the cyanobacteria Synechococcus sp.
WH 5701. We inquired into the metabolic capabilities of
the chromatophore; the possible metabolic interaction of
the chromatophore with its host; and in silico simulate
the process of metabolic evolution experienced by the
chromatophore in host-restricted conditions.

Results

Differential gene retention of functional categories in the
chromatophore genome

Our first objective was to determine to what extent gen-
etic loss affected functional metabolic categories in the
chromatophore (i.e. which functional gene categories
were preferentially preserved) when compared to the
genome of Synechococcus sp. WH 5701. We compared
against Synechococcus sp. WH 5701 because is the clos-
est free-living cyanobacterium with a sequenced genome
and it is likely to be similar in gene content to the ances-
tor of the chromatophore. To assess the statistical sig-
nificance we used a hypergeometric distribution.

As is shown in Fig. 1, genes belonging to 13 functional
categories have been less affected by genome erosion. In
particular, photosynthesis and fatty acid biosynthesis cat-
egories are less affected. Retention of these 13 functional
categories in the chromatophore can be attributed to a
host-level selection protecting from gene loss. Conserved
genes very likely play an adaptive role in the holobiont.

In silico metabolic reconstruction of the chromatophore
of P. chromatophora and Synechococcus sp. WH 5701

To better understand the role in the symbiosis played by
remaining genes in the chromatophore, we recon-
structed two metabolic models. One for the chromato-
phore of P. chromatophora CCAC 0185 [5] and the
other for Synechococcus sp. WH 5701, the closest free-
living cyanobacterium with a sequenced genome. The
rationale behind this is to use Symechococcus sp. WH
5701 as a proxy of the ancestral cyanobacterium that
evolved into the chromatophore.

Metabolic model reconstruction of the free-living
cyanobacterium Synechococcus sp. WH 5701 was done
by identifying orthologs to those protein-coding genes
reported in the metabolic model of Symechocystis sp.
PCC 6803 (iJN678) [26]. The resulting metabolic model
of the free-living organism (i{CV498) comprised 743
metabolic reactions with 698 metabolites and 498
protein-coding genes. Metabolic model reconstruction
of the chromatophore was done by identifying those
genes in the genome of the chromatophore of P. chro-
matophora CCAC 0185 that are orthologous to the
free-living metabolic model (iCV498). The metabolic
model of the chromatophore (iCV265) comprised 627
reactions, 615 metabolites and 265 protein-coding
genes. Because Synechococcus sp. WH 5701 is a close
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free-living relative of the chromatophore, it could be
considered that 158 reactions were lost along genome
reduction in the chromatophore (Table 1).

By using the biomass equation of the cyanobacterium
Synechocystis sp. PCC 6803 [26], we tested the function-
ality of the iCV498 and the iCV265 metabolic models
with Flux Balance Analysis (FBA). Biomass production
was set as objective function. In silico growth was simu-
lated under autotrophic conditions. CO, and photons
uptake were set to 3.7 mmol x gDW ™' x h™' and
100 mmol x gDW ™" x h™! respectively and set as con-
straining metabolites as in [26].

In model iCV498, almost every metabolic pathway for
biomass production is complete. The exceptions were 9
reactions for which no orthologous exist in Synechococ-
cus sp. WH 5701 when compared to i{JN678 (see model
iCV498 in Additional file 1). These reactions had to be
added to the iCV498 model in order to produce all the
components necessary for the biomass equation. In this
way, iCV498 showed an in silico growth rate of 0.0884 h™*
which is identical to the in silico growth reported for
Synechocystis sp. PCC 6803 metabolic model under
autotrophic conditions [26].

Under these conditions, the metabolic model of the
chromatophore (iCV265) did not show in silico growth.
This was obviously due to the reduced metabolic cap-
abilities caused by the genomic reduction process
experimented by the photosynthetic endosymbiont. Gen-
ome reduction has affected the metabolic capabilities of
the chromatophore in two ways: a) some biosynthetic
pathways were completely lost; while b) some other were
partially lost.

For example, in Synechocystis sp. PCC 6803 riboflavin
is synthesized by four genes that perform six reactions
by using Guanosine 5’-triphosphate (G5P) and D-
Ribulose 5-phosphate (R5P) as precursors metabolites
[26]. All these genes for riboflavin biosynthesis were lost
in the chromatophore. In this case, we assumed that the
host provides riboflavin to the chromatophore. The pos-
sible explanation for this loss is that riboflavin is the
main precursor for flavin mononucleotide (riboflavin 5'-
monophosphate, FMN) and flavin adenine dinucleotide,
two main compounds that work as coenzymes for many
of the enzymes such as oxidoreductases including
NADH dehydrogenase as well as in biological blue-light
photo receptors. This observation is concomitant with
the loss in some functional gene categories; as in oxida-
tive phosphorylation (Fig. 1). As the hypothesis is that
the metabolic network must preserve its functionality,
whenever we found a similar situation, exchange reac-
tions were added to the metabolic model to simulate the
incorporation of riboflavin and other metabolites as
additional nutrients from the host. These metabolites
included amino acids, cofactors, vitamins and other
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Fig. 1 Conservation of functional gene categories in the chromatophore when compared to Synechococcus sp. WH 5701. For each functional
category we show in green and red the percentage of gene conservation and lost in the chromatophore, respectively. For instance, if a gene
category is completely green, it indicates that all orthologs in Synechococcus sp. WH 5701 are conserved in the chromatophore. As shown, gene
loss affects differentially each one of the functional categories in the chromatophore. Functional categories particularly well conserved are
indicated with asterisks (p-value < 0.05% or <0.05**, Bonferroni corrected). Statistical significance calculated by using a hypergeometric distribution
[63]. Genes were classified following KEGG database (http://www.kegg.jp)

molecules which are essential for the biomass equation
but cannot be produced by the chromatophore (Fig. 2).

Some other biosynthetic pathways are truncated in
the chromatophore because single gene coding en-
zymes were lost. For example, in the biosynthetic path-
way of leucine, most gene coding enzymes are present
in the chromatophore except for the gene coding for

Table 1 Characteristics of metabolic models of Synechococcus
sp. WH 5701 (iCv498) and the chromatophore (iCV265)

Metabolic model

iCV498 iCV265
Genes 498 265
Metabolites 698 615
Intracellular metabolites 661 578
Extracellular metabolites 37 37
Reactions 743 627
Enzymatic reactions 624 478
Transport reactions 82 70
Exchange reactions 37 37

3-isopropylmalate dehydrogenase. In this case, we as-
sumed that host encoded enzymes complement the
pathway in the endosymbiont. Either by importing
host encoded enzymes to the chromatophore or by ex-
changing intermediated metabolites between the sym-
bionts. Similar situations have been proposed for other
host-endosymbiont systems [12]. For this reason, we
assumed that the production of these metabolites is
shared between the host and the endosymbiont (see
model iCV265 in Additional file 2).

In addition, some reactions in the chromatophore
model iCV265 for which no orthologous genes exist
with the free-living model iCV498 but are essential for
in silico growth were assumed to be present (see model
iCV265 in Additional file 2).

Finally, chromatophores lost the ability to store pho-
tosynthates as well as the capacity to synthesize su-
crose [5]. Because of that, glycogen was removed from
the biomass equation in iCV265. Under these condi-
tions, in silico growth of the iCV265 model was
0.1568 h™'. This is an unrealistic rate because growth
of the chromatophores is restricted to host division
which is much lower than growth rate reported for
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Fig. 2 Nutrients uptake simulation in the chromatophore model
(iCV265). Metabolites that cannot be produced by the chromatophore
(with respect to the free-living model, iCV498) include: amino acids
(Met = L-Methionine, Trp = L-Tryptophan, Arg = L-Arginine, Glu =
L-Glutamate, Hom = L-Homoserine), cofactors (NAD = Nicotinamide
adenine dinucleotide, Adocbl = Adenosylcobalamin, CoA = Coenzyme
A), vitamins (Ribflv = Riboflavin) and others (AICAR =1-(5-Phosphoribosyl)-
5-amino-4-imidazolecarboxamide, SucCoA = Succinyl-CoA, LipidADs =
Lipid A Disaccharide, DAHP =2-Dehydro-3-deoxy-D-arabino-heptonate
7-phosphate)

free-living cyanobacteria and even other photosyn-
thetic eukaryotes [27].

Robustness analysis of metabolic models

We assessed the robustness of the iCV498 and the
iCV265 models to single gene deletions. Genetic ro-
bustness was defined as the capacity of the models to
maintain its metabolic capabilities (in silico biomass
production) after a genetic deletion. Under photo-
trophic conditions, model iCV498 showed 333 genes
(66.86%) to be essential because its deletion decreases
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the biomass production over 99% (Fig. 3). This result
shows that iCV498 is less robust than the metabolic
model of Synechocystis sp. PCC 6803 where 51.6% of
the genes are essential under these same conditions
[26]. In addition, there is a decreasing robustness in the
model of the chromatophore where 222 of the 265
genes (83.77%) are essential (Fig. 3). This indicates that
the genomic reduction experimented by the chromato-
phore rendered its metabolic network fragile. The same
result has been observed for other metabolic networks
of endosymbionts [20, 28, 29].

Interestingly, we found that there are 3 non-essential
genes in the metabolic model iCV498 whose single dele-
tion decreases in silico growth rate. These include genes
encoding the enzymes acetyl-CoA synthetase, malic en-
zyme (NAD) and fumarase. Of these three, the last en-
zyme is the only one decreasing the in silico growth rate
in {JN678 when it is deleted (data not shown). In the
iCV265 model, all these 3 genes were lost. In addition,
the non-essential gene in iCV498 coding for an enzyme
with arginase activity is the only one whose deletion de-
creases the growth rate in the iCV265 chromatophore
model. This suggests that genome reduction leading to
iCV265 caused metabolic restructuring because deletion
of this enzyme with arginase activity in iCV498 has no
effect.

In silico simulation of metabolic-gene loses in the
chromatophore of P. chromatophora

Based on the metabolic network of the free living Syne-
chococcus sp. WH 5701, we simulated in silico the gene
loss. We evaluated the impact of intracellular conditions
(metabolite availability) on the evolution of the chro-
matophore. In particular, we asked whether the set of
metabolites predicted to be provided by the host in the
iCV265 model (Fig. 2) determined actual gen content of
the chromatophore after genome reduction.

Two in silico intracellular conditions were evaluated.
In the first one, we simulated genetic reduction under in
silico intracellular conditions where available nutrients
were those predicted in the iCV265 model (we refer to
them as Proposed Nutrients) (Fig. 2). In the second one,
we randomly selected metabolites from the iCV498
model (the same number as in the first condition) and
assigned as available nutrients under intracellular condi-
tions (we refer to them as Randomized Nutrients; see
Additional file 3: Table S1). The algorithm to simulate
genome reduction is explained in detail in the methods
section.

This algorithm allowed us to obtain in silico evolved
chromatophores whose metabolic capabilities regarding
the biomass production are equivalent to those of
iCV265; but differing in their in silico evolutionary his-
tory and gene content.
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iICV265

Simulations under the Proposed Nutrients conditions
resulted in reduced metabolic networks with 295.1 (+
2.63) genes on average. In these reduced networks, of
the 498 genes present in the free-living ancestor (model
iCV498), 52.2% are strictly conserved in the 500 simula-
tions and 26.7% are dispensable in all of them. In Ran-
domized Nutrients simulations, reduced networks have
an average size of 326.8 (+ 5.26) genes and 54% and
16.2% are conserved and dispensable in the 500 simula-
tions, respectively.

As is shown in Fig. 4, the proportion of: i) essential
genes (predicted to be essential in 500 simulations); ii)
variable genes (predicted to be conserved in 1 to 499
simulations); and iii) dispensable genes (predicted to be
lost in 500 simulations), varies between metabolic path-
ways. These proportions also vary between treatments
(i.e, Proposed Nutrients or Randomized Nutrients).
Surprisingly, the most extreme case is that of the genes
participating in photosynthetic activity. In Proposed
Nutrients 77.6%, 18.3% and 4.1% are predicted to be es-
sential, variable and dispensable, respectively. While for
Randomized Nutrients none was predicted to be essential
nor dispensable because 100% of them were variable.

Genetic concordance was evaluated between these sim-
ulated minimal networks and the real chromatophore

model (iCV265). This was done by measuring sensitivity
and specificity as in [30]. In Fig. 5, we show the fraction of
true-positives and false-positives for every cutoff (1 to
500). True-positive and false-positive for every cutoff (1 to
500) form a curve whose area under the curve represents
the probability that a gene conserved in iCV265 is present
in more simulations than a gene which has been lost.

The area under the curve shows the contribution of the
nutrients available in intracellular conditions explaining
the evolutionary history experimented by the chromato-
phore. Accordingly, the accuracy obtained under the Pro-
posed Nutrients condition was 77.4%, while that of the
Randomized Nutrients was 59.8%. The difference between
the areas under the curve from both conditions is statisti-
cally significant (p-value < 0.001, Chi-square test of
homogeneity).

Modeling selection and drift to explain metabolic
evolution of the chromatophore

We are interested in understanding the role played by
natural selection during the evolution of the metabolic
capabilities of the chromatophore. Chromatophores pro-
vide the host with reduced-carbon, probably a hexose.
This in analogy to the origin of plastids. It has been pro-
posed that during the early stages of plastid evolution,
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Fig. 4 Variation in the proportion of genes classified as essential, variable and dispensable in different metabolic pathways according to two
different sets of available nutrients for the chromatophore. a Set of Proposed Nutrients; b set of Randomized Nutrients. AA to BN metabolic
pathways: AA* = Citrate cycle (TCA cycle); AB = Lipopolysaccharide biosynthesis; AC = Carotenoid Biosynthesis; AD = Folate biosynthesis;
AE = Glycerolipid metabolism; AF = Hydrogen production; AG = Steroid biosynthesis; AH = Aminosugars metabolism; Al* = Nicotinate and

nicotinamide metabolism; AJ = Nucleotide sugars metabolism; AK = Riboflavin metabolism; AL = Thiamine metabolism; AM = Carbon fixation;
AN = Glutamate metabolism; AO = Lysine metabolism; AP = Nitrogen metabolism; AQ = Terpenoid backbone biosynthesis; AR = Fructose and
mannose metabolism; AS* = Pantothenate and CoA biosynthesis; AT = Peptidoglycan biosynthesis; AU = Ubiquinone and other pterpenoids
biosynthesis; AV = Urea cycle and metabolism of amino groups; AW* = Alanine, aspartate and glutamate metabolism; AX = Valine leucine and
isoleucine biosynthesis; AY = Histidine metabolism; AZ* = Pentose phosphate pathway; BA = Starch and sucrose metabolism; BB = Fatty acid
biosynthesis; BC = Glyoxylate and dicarboxylate metabolism; BD = Sulfur Cysteine and methionine metabolism; BE = Arginine and proline
metabolism; BF = Pyrimidine metabolism; BG = Glycolysis/Gluconeogenesis; BH = Pyruvate metabolism; BI* = Phenylalanine tyrosine and
tryptophan biosynthesis; BJ* = Purine metabolism; BK* = Porphyrin and chlorophyll metabolism; BL = Oxidative phosphorylation;

BM* = Photosynthesis and BN = Transport. * Metabolic pathways with a difference in categorical genes with p-value < 0.05

the photosynthetic endosymbiont exported reduced-
carbon in the form of an hexose-phosphate through an
hexose phosphate transporter of bacterial origin (non-
cyanobacterial) [31, 32].

To study how the potential rate of carbon exportation
evolved, a hexose export reaction was added to the
metabolic models. This reaction was defined as objective
function. To ensure biomass components production,
the biomass reaction was fixed to 0.0884 h™ which, as
stated previously, is the growth rate of Synechocystis sp.
PCC 6803 metabolic model under autotrophic growth
conditions [26].

Under these conditions, there is no exportation of
reduced-carbon in the iCV498 model. However, in the
iCV265 chromatophore model, the potential rate of hex-
ose exported without affecting the in silico growth rate
was 0.2689 mmol x gDW ™ x h™". In Fig. 6, we show the
fluxes calculated with FBA of the central metabolism of
the models of the chromatophore and the free-living
cyanobacteria in conditions previously mentioned.

Fluxes calculated for production of metabolites precur-
sors used to produce biomass components are produced
in less quantity in the chromatophore’s model (Fig. 6).

This is a consequence of the loss of metabolic capabil-
ities in the metabolism of the chromatophore which
allow the redirection of carbon through the gluconeo-
genic pathway for the production of hexoses as meta-
bolic objective, instead of being used in the production
of biomass components.

To analyze the efficiency of the metabolic networks
in terms of hexose production at overall metabolism,
we calculated the yields. The yields are parameters
that measure the efficiency of the metabolic network
and allow the comparison across different microor-
ganisms. For instance, the yield of the ethanol produc-
tion is higher in Saccharomyces cerevisiae compared
to Zymomonas mobilis, this was the result of the
specialization of the microorganism to produce spe-
cific metabolites [33]. Therefore, we calculated the
yields of carbon, energy and reducing equivalents
(extracellular CO,, ATP and NADPH) required to pro-
duce hexose (Table 2). These results show that the
model of the chromatophore is more efficient for
producing hexose from the external carbon than the
free-living cyanobacteria. It means that metabolic
restructurings experienced by the chromatophore
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rendered its metabolism more efficient to produce
hexose which can be provided to the host.

The yields suggest that the loss of some metabolic cap-
abilities in the ancestral cyanobacterium caused a redir-
ection of fixed CO, causing changes in metabolic fluxes
and consequently increasing the rate of reduced-carbon
exported to the extracellular compartment.

We then inquired about the evolutionary forces that
determined genetic conservation and metabolic func-
tionality in chromatophores. Specifically, we wanted to
infer if these metabolic capabilities of the iCV265
model (the potential rate of hexose exportation of
0.2689 mmol x gDW ™' x h™') could have been possible
under a random model of evolution or were the conse-
quence of natural selection for metabolic specialization
of the chromatophore and its positive impact at the
holobiont. To tests this, we simulated the metabolic re-
duction process with hexose export and biomass pro-
duction as evolutionary restrictions in a random model
where hexose exported must be greater than zero. It
means that every gene affecting the in silico growth rate
of 0.0884 h™' and impairing hexose export was consid-
ered as essential, while the hexose export rate could
always vary while being greater than zero (purifying se-
lection restriction for hexose export).
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Minimal networks obtained in silico under these con-
ditions were variable in size and gene content. Of 500
simulations, only 175 (66.03%) of the genes conserved in
model iCV265 are conserved in all the simulations. Con-
versely, there are 45 genes predicted to be essential in all
these 500 simulations which are not conserved in model
iCV265. The metabolic networks from these 500 simula-
tions are different in gene content and show different
hexose export rates however they are equivalent in bio-
mass production (Additional file 3: Figure S1).

As shown in Fig. 7, after in silico metabolic reduction,
hexose export rate in minimal networks obtained under
these conditions tend to be minimal and close to zero
(hexose export rate could not reach zero because of the
restriction we imposed). On the other hand, only 2.6% of
simulations have a potential rate of hexose exported
equal or higher than the metabolic model of the chro-
matophore (0.2689 mmol x gDW ™ x h™"). This suggests
that the probability of obtaining a potential rate of hex-
ose exported similar to that of iCV265 under a random
model is less than 5%. We got a similar result by varying
the growth rate constraint of 0.0884 h™" under plausible
biological values (see Additional file 3: Figure S2).

Although variable, our simulations evolved metabolic
networks that have approximately the same number of
reactions than iCV265. The average number of reactions
with non-zero fluxes in the reduced metabolic models of
the 500 simulations is 416.15 + 3.91. This is slightly less
than the number of reactions with non-zero fluxes in
the iCV265 model (442 reactions). This shows that the
small percentage of simulations (2.6%) showing a poten-
tial rate of hexose exported equal or greater than that of
the chromatophore (0.2689 mmol x gDW ™ x h™') is
not due simply to smaller size of the simulated meta-
bolic networks.

These in silico experiments suggest that the potential
rate of hexose exported in model iCV265 is unlikely to
be the outcome of only genetic drift and purifying selec-
tion (i.e., less than 5% of the simulated networks export
hexose at a rate comparable to that of iCV265). This
suggests that the potential rate of hexose exported was
the result of a process of functional specialization in
which the increasing rate of hexose exportation was fa-
vored by natural selection due to the positive impact at
the holobiont level.

Interestingly all these 2.6% of in silico evolved chromato-
phores have in common the conservation of a phosphate
transporter via ABC system which is also present in the
chromatophore model (iCV265). Conservation of this
phosphate transporter allows the simulated network to get
the phosphate necessary to be able to export fixed carbon.
Without this transporter most of fixed carbon is oxidized
in the pentose phosphate pathway releasing only a small
amount to the extracellular compartment (data not shown).
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Fig. 6 Flux distribution obtained with FBA of the central metabolism of iCV265 (blue) and iCV498 (red)

Metabolic integration of the chromatophore to its host

In our previous simulations, we assumed that nutrients
(Fig. 2) were available simultaneously for the chromato-
phore since the beginning of the evolutionary process at
the onset of the endosymbiosis. However, it is likely that
this has not been the case and transporters for these nu-
trients were gained (or lost) sequentially. For instance,
metabolic transport activity in the chromatophore is

Table 2 Yields (Yp,s) analysis of extracellular CO,, ATP and
NADPH consumed in hexose production for both models

Metabolic model

iCV265 iCv498

mmol Hexose/ mmol mmol Hexose/ mmol
CcO, 0.069 0.009
ATP 0.023 0.002
NADPH 0.036 0.004

reduced due to loss of most transporters in comparison
to free-living cyanobacteria [5]. And it has been reported
that a large percentage of solute transporters in plastids
from Plantae have host and bacterial (non-cyanobacter-
ial) origin [31, 34].

Therefore, we simulated the evolutionary acquisition
of transporters and its consequences in gene loss and
the capability of the chromatophore to export fixed car-
bon to its host.

For every simulation, we used iCV498 as a free-living
ancestor of the chromatophore under nutrient-rich con-
ditions (Fig. 2). However, in this experiment, the model
iCV498 did not have access to all nutrients since the be-
ginning of the simulation. Instead, we randomly
assigned a transport allowing the uptake of the respect-
ive nutrient. We then randomly deleted one gene at a
time from iCV498. If the deleted gene affected the
growth rate (0.0884 h™') or impaired hexose
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exportation, we considered this gene as essential and
we restored it to the model. In this way we analyzed
the selective impact caused by gene loss due to the
addition of a single transporter and the concomitant re-
laxation of natural selection for retention of specific
biosynthetic pathways. Once we analyzed every gene in
the model, we randomly assigned a second transport
and then we repeated the gene loss simulation men-
tioned above. Simulation stops when in silico chro-
matophore has access to the 13 nutrients (Fig. 2) and
all genes have been evaluated for their essentiality.

As shown in Fig. 8, after the incorporation of the 13
transporters, the probability of getting a potential rate of
hexose exported equal or higher than the metabolic model
of the chromatophore (0.2689 mmol x gDW ™' x h™") is
less than 5% in 500 simulations, in agreement with our
previous result (Fig. 8).

During the process of metabolic integration, it is noted
that the maximum rate of hexose exportation becomes
greater with every metabolite obtained as nutrient. How-
ever, by inspecting the frequency distribution of simula-
tions with different potential rates of hexose exported, it
is obvious that as metabolic integration advances, the
probability of getting the maximum rate of hexose ex-
portation decreases (i.e. the frequency of networks with
large export rate becomes smaller).

These changes in frequency distributions during the
process of metabolic integration can be interpreted in
terms of the functional specialization of the chromato-
phore. As metabolic integration proceeds (with the
addition of more transporters), the chromatophore in-
creased its capacity to provide fixed carbon to its host.
However, continued gene loss led to a simplified meta-
bolic network and a smaller fraction of in silico evolved
chromatophores can export as much fixed carbon as

iCV265. The evolutionary landscape becomes smaller as
evolution proceeds.

The metabolism of the chromatophore is specially
adapted to produce carbon for its host

As shown above, the potential rate of hexose exported
in the chromatophore model (iCV265) is highly
dependent on phosphate consumption. In addition, the
growth rate of the chromatophore is coupled to the
host’s growth rate. As shown above, the potential rate of
hexose exported is unlikely to be the outcome of a ran-
dom evolution.

To test the impact of these two restrictions, we ana-
lyzed the metabolic properties of models i{CV265 and
iCV498 in potential rate of hexose exported under
growth rate and phosphate uptake restrictions. As
shown in Fig. 9, the potential rate of hexose exported in
the iCV498 model is robust with respect to growth rate
and phosphate uptake (i.e. a given growth rate can sus-
tain the hexose rate exportation with different rates of
phosphate consumption). This contrasts with the chro-
matophore model (i{CV265) where, for a given growth
rate, only a specific consumption of phosphate is neces-
sary to sustain hexose release. In addition, the capacity
of hexose export in the iCV265 model for a determined
growth rate restriction is greater than the iCV498
model.

Discussion

In this work, we show that the metabolic network of the
chromatophore of P. chromatophora is different to the
metabolic network of its free-living relative Synechococ-
cus sp. WH 5701. We suggest that these differences
evolved by natural selection. Gene-loss and carbon flux
redirection guided by natural selection led to metabolic
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Fig. 8 Metabolic integration with the host determines the rate of hexose exported by in silico chromatophores as well as the frequency of
simulations that provide higher rates of reduced-carbon to the host. X axis, hexose export rate; Y axis, frequency of simulations; Z axis, transporters

specialization of the chromatophore as a reduced-carbon
provider.

Purifying selection and the maintenance of the symbiosis
Our analysis showed that some metabolic pathways
have been preferentially conserved in the chromato-
phore (Fig. 1). These preserved metabolic pathways (i.e.
photosynthesis, carbon fixation, and gluconeogenesis)
very likely play a prominent role in the symbiosis. This
pattern is analogous to the one observed in many other
endosymbionts e.g. Buchnera aphidicola [35]. In this
later case, biosynthetic pathways producing essential
amino acids for the host [12, 35] are preserved by host-
level natural selection.

As mentioned above, differential conservation of gene
category functions suggests that purifying selection is
preserving relevant symbiotic functions. Accordingly, es-
timation of the rate of nucleotide substitution in 681
DNA alignments of protein-coding genes orthologous
between chromatophores of two different strains of P.
chromatophora (CCAC 0185 [5] and FK 01 [7]) showed
that most of them have signals of purifying selection [7].

It has been suggested that host-level selection prevents
the fixation of deleterious mutations in endosymbionts
thus lowering the chances of a mutational meltdown
resulting in extinction [36, 37]. And, of course, this pre-
vents the consequent replacement of non-functional en-
dosymbionts [38]. In addition, selective pressure to
maintain functional proteins increases with the time of
host-endosymbiont interaction [36] and combined with
very strong bottlenecks may help to reduce the

accumulation of deleterious mutations. This has been
proposed to explain mitochondrial genome evolution
[39].

Metabolic integration of the chromatophore to its host
Comparison of the metabolic models of the chromato-
phore and the cyanobacterium Synechococcus sp. WH
5701 allowed us to inquire into the evolution of the
metabolic interaction of the chromatophores with its
host. For example, several metabolic pathways in the
chromatophore are incomplete. It is likely that the host
supplies these metabolites as nutrients to the chromato-
phore. Metabolic pathway sharing is a hallmark of endo-
symbiotic organisms. For example Wolbachia, which are
endosymbionts of many animal species, show a degraded
genome [40, 41] whose limited metabolic capabilities are
complemented by its host [42]. In turn, the endosymbi-
ont provides the host with nutrients such as riboflavin,
positively impacting host fitness [42]. Equally remarkable
is the likely coupled production of some metabolites be-
tween the chromatophore and its host. As mentioned
above, this collaboration in metabolite biosynthesis has
been observed in other symbiotic systems [43—46].

Fragility of a reduced metabolic network

To study the metabolic capabilities of the chromato-
phores we used FBA. This stoichiometric approach can
predict cellular phenotypes in specific environmental
conditions. Generally, biomass production is fixed as ob-
jective function. In absence of biomass composition, the
use of a biomass equation from a related organism is a
valid starting point for metabolic analysis [47-49]. In
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this way, FBA has been used to infer the metabolic cap-
abilities of different organisms whose cultivation and
experimental management is challenging or not yet pos-
sible, as in the case of endosymbionts. For example,
biomass composition and the metabolic model of
Escherichia coli were used for metabolic analysis of
Buchnera aphidicola [20, 30], Sodalis glossinidius [29],
and Blattabacterium cuenoti [28]. In the same way, we
used the biomass composition and stoichiometric model
of Symechocystis sp. PCC 6803 as a starting point to
model the metabolism of the chromatophore and Syne-
chococcus sp. WH 5701 [26].

We found that the metabolism of the chromatophore
is highly fragile to gene deletions. Approximately 84% of
the genes in the model are essential when singly deleted
in comparison with ~67% of the genes in Synechococcus
sp. WH 5701. A similar difference in metabolic fragility
was found by [20] when comparing the models of B.
aphidicola and its free-living relative Escherichia coli
where 84% and 19% of genes were essential, respectively.

In the same way, the metabolic network of two strains of
Blattabacterium cuenoti (Bge and Pam), the obligated
primary endosymbiont of cockroaches, were shown to
be highly fragile to single gene deletion. It was found
that 76.1% and 79.6% were essential genes, respectively
[28]. Finally, in Sodalis glossinidius (the secondary non-
obligated endosymbiont in early stages of tsetse flies),
44.54% metabolic genes were found to be essential, com-
pared with its ancestral network where only 25.48% are
predicted to be essential [29].

Our robustness analyses of the iCV265 and the
iCV498 models agree with the generalization that
metabolic networks of endosymbionts are more fragile
than their free-living counterparts. This metabolic fra-
gility of endosymbionts contrasts with theoretical esti-
mations that suggest that, in general, metabolic systems
are robust and complex [50]. However, the metabolic
systems of endosymbionts are considered more robust
[28] than minimalist metabolic networks [51]. The dif-
ference in metabolic fragility of the chromatophore
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when compared to Synechococcus sp. WH 5701 reflects
the transition from a free-living style to a more stable
condition inside Paulinella chromatophora.

Metabolic environment as a determinant of gene content
It has been shown that retention of metabolic genes in
endosymbionts is determined by the metabolic require-
ments and molecular environment of the host [52, 53].
With the use of FBA and the metabolic model of Syne-
chococcus sp. WH 5701 as a proxy of the ancestor of the
chromatophore, we evaluated the impact of the host-
metabolic environment in the reduction of the metabolic
system of the endosymbiont. The proposed host-
metabolic environment (Proposed Nutrients) predicted
with 77.42% of accuracy the actual gene content of the
chromatophore. This is in contrast with the 59.8% of
accuracy obtained when using a randomly set of host-
provided metabolites (Randomized Nutrients). This em-
phasizes the contribution of the intracellular metabolic
environment to the evolution of the metabolism in the
chromatophore.

Similar reductive simulations have been used to pre-
dict the set of essential genes of pathogens located in
certain environmental niches (like the bloodstream)
within the human body [52]. In the same way, reductive
evolution simulations using E. coli as free-living ancestor
predicts with 80% of accuracy the metabolic gene con-
tent of B. aphidicola and Wigglesworthia glossindia [30].

Inspection of the proportion of dispensable, variable,
and essential genes by in silico reductive simulations (i.e.
Proposed Nutrients and Randomized Nutrients) predicts
differential gene retention patterns between different
metabolic pathways. For example, in Randomized Nutri-
ents simulations, photosynthesis pathway (which is the
raison d’étre of the symbiosis) 100% of genes are pre-
dicted as “variable” (none of the genes are predicted to
be retained in the 500 simulations) while in Proposed
Nutrients ~78% are essential. This means that under
Randomized Nutrients, photosynthesis function could be
useful but not essential and could have been lost in the
chromatophore by chance. Clearly, the set of metabolites
comprising Randomized Nutrients cannot account for the
metabolic gene content of extant chromatophores.

Maximization of biomass production is regularly used
as objective function in FBA analysis. It allows predicting
the distribution of fluxes through a metabolic network
[54]. The maximization of biomass function is used as a
proxy of evolutionary fitness. However, many other ob-
jective functions can be used [54, 55]. For instance, it
was estimated that Chlorella (the photosynthetic endo-
symbiont of Paramecium bursaria), releases 57% of its
photosynthates to its host [56]. This means that most
carbon photosynthetically assimilated is destined to sym-
biotic interaction instead of biomass production of
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Chlorella itself. In the same way, P. chromatophora has
phototrophic nutrition. It depends on carbon assimilates
which derivate from the endosymbiotic cyanobacterium
whose inorganic carbon rate assimilation is the same as
a free-living cyanobacteria [10]. But unlike its free-living
relatives, its growth rate is restricted by P. chromato-
phora. Considering the above metabolic analysis of the
chromatophore, which predict an in silico growth rate of
0.1568 h™?, it is difficult to consider the biomass as the
only objective function in chromatophores. Taking into
consideration that chromatophores provide the host
with reduced-carbon, a reaction simulating hexose ex-
port to extracellular compartment was added. This re-
action was defined as objective function. And to ensure
biomass components production, biomass reaction was
fixed to 0.0884 h™' which is the growth rate of a free-
living relative cyanobacterium. Interestingly, under
these conditions the metabolic model of the chromato-
phore predicts a potential rate of hexose exportation of
0.2689 mmol x gDW ™' x h™'. As far as we know, this is
the first metabolic reductive evolutionary analysis
where metabolic functionality (i.e. hexose export) of the
endosymbiont is explored as objective function, differ-
ing from previous analyses where biomass is set as
objective function of mutual endosymbionts as B. aphi-
dicola (20, 30], S. glossinidius [29] and B. cuenoti [28].

ABC phosphate transporter is an essential component of
the chromatophore

All simulations showing a hexose exportation rate
equivalent to that of the chromatophore model
(iCV265) share the ABC phosphate transporter. This
P;-dependency in the chromatophore agrees with that
observed in isolated spinach chloroplasts [57]. It has
been shown that photosynthesis declines dramatically
(less than 10% of the maximum rate) in chloroplast in
the absence of P; in the reaction medium. Also, carbon
export from the chloroplast is inhibited [58], with up to
60% of *C fixed being retained in the chloroplast [57].
As mentioned above, this observation agrees with the
more than 95% of simulations which predict that lack
of ABC phosphate transport favors carbon retention in
the chromatophore instead of being released to the
host. Therefore, we predict that lack of ABC trans-
porter in the genome of the chromatophore of Pauli-
nella FKO1 is compensated by a phosphate transporter
coded in the host [7].

The role of natural selection on the evolution of the
metabolism of the chromatophore

Inspection of FBA calculated central metabolic fluxes in
the chromatophore and in the free-living cyanobacteria
showed that the endosymbiont is better at producing
hexose. This is likely a host related adaptation. To
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investigate whether this and other characteristics of the
metabolic model of the chromatophore evolved by nat-
ural selection, we simulated in silico reductive evolution
with a null model not including positive selection. As a
proxy of genome reduction by purifying selection and
random genetic drift, we submitted the metabolic model
of Synechococcus sp. WH 5701 with the following algo-
rithm: a) first, we simulated host-level purifying selection
by requiring that the rate of hexose exportation of the
model must be always greater than 0 and biomass is pro-
duced at 0.0884 mmol x gDW " x h™%; b) next, we per-
formed rounds of single gene deletion until no more
genes could be deleted; c) finally, we repeated this
process 500 times. By this, we obtained a population of
500 reduced metabolic networks all of them capable of
producing 0.0884 mmol x gDW ™" x h™' of biomass, but
differing in hexose rate exportation. Differences in rates of
hexose exportation were due to contingency-dependent
loss of alternative pathways [30]. With this experiment,
we could determine if the potential rate of hexose
exported in iCV265 (0.2689 mmol x gD\X/’1 x h™) is
easily obtained by host-level purifying selection (hexose
exportation >0) and contingency-dependent evolution on
random gene deletion. Our evolutionary reductive ana-
lyses showed that <5% of simulations were predicted to
export hexose at a similar rate as the model iCV265. This
suggests that metabolic functionality of iCV265 is unlikely
to be determined by genetic drift alone. Therefore, we
conclude that natural selection at holobiont level may
have contributed to shape metabolic functionality of the
chromatophore.

Natural selection as metabolic engineer

According to the above mentioned, we consider suitable
to make the analogy of natural selection as metabolic
engineer. Metabolic engineering can be defined as “the
directed improvement of product formation or cellular
properties through the modification of specific biochem-
ical reactions or introduction of new ones” [22]. One of
the objectives of metabolic engineers is to redirect the
flux of mass through the metabolism of organisms to-
wards a desired metabolic product. Some genetic strat-
egies to redirect metabolic flux toward production of a
desired metabolite include: increasing the precursor
supply; altering the regulation (overexpressing) genes;
increasing the efficiency of bottleneck enzymes; redu-
cing flux toward unwanted byproducts; or eliminating
competing pathways by gene-deletion [59]. It has been
proposed that cellular metabolism of free-living micro-
organisms is primed, through natural selection, for the
maximum responsiveness to the history of selective
pressures rather than for the overproduction of specific
chemical compound [60]. In host-restricted conditions
this responsiveness to free-living selective pressures are
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no longer needed. Instead, new biological objectives are
defined now related to holobiont survival.

For instance, it was proposed that the chloroplast
metabolic network has improved photosynthetic proper-
ties in comparison to free-living cyanobacteria [21]. For
example, the metabolic network in chloroplast has: i) a
longer average path length; ii) a larger diameter; iii) is
Calvin Cycle-centered; iv) and presents better modular
organization when compared with the network of free-
living cyanobacteria [21]. In a similar way, the metabol-
ism of the chromatophore (iCV265) seems to be tailored
for the exportation of reduced-carbon; that is, when
comparing the export of reduced-carbon between the
iCV265 and the iCV498 models (with phosphate as re-
strictive nutrient) we found that iCV265 shows higher
rates of hexose exported than the free-living iCV498
model at the cost of increased consumption of phos-
phate (Fig. 9).

The evolutionary mechanism outlined above applies
when the host benefits from the endosymbiont. In par-
ticular, mechanisms such as “partner fidelity feedback”
(PFF) promote cooperation between symbionts. PFF
requires individuals to be “associated for an extended
series of exchanges that last long enough that a feedback
operates” [18]. Similar mechanisms likely operated in
other symbiotic systems. For example, Buchnera [61]
and Blochmannia [62] overproduce essential amino
acids (EAAs) to its host. This overproduction of EAAs
was consequence of metabolic restructurings due to
metabolic-gene losses. For example, the truncation of
the purine biosynthesis pathway which allows the endo-
symbiont to produce histidine at higher rates than free-
living relatives [20]. Reductive evolutionary simulations
carried out by [20] showed that this truncation is an im-
probable evolutionary event under conditions tested.

Conclusion

Our main objective was to better understand the meta-
bolic changes experienced by the free-living cyanobac-
teria to become a chromatophore. In addition, we
assessed the evolutionary forces driving organellogenesis.
We found evidence that certain metabolic pathways are
preferentially conserved in the chromatophore. We also
found that the pattern of metabolic gene loss strongly
depends on the availability of nutrients from its host.
The high fragility of the chromatophore network re-
flects the transition to a more stable environment and,
consequently, its simplification. The chromatophore is
specialized in producing reduced-carbon which could
be released to the host. This specialization was conse-
quence of metabolic restructurings which could not be
possible in free-living conditions. We interpret this
specialization as consequence of natural selection act-
ing as a metabolic engineer which modifies intrinsic
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metabolic properties of the endosymbiont impacting
positively at the holobiont level. Our in silico simula-
tions allowed us to determine that metabolic
specialization of the chromatophore is an unlikely re-
sult of purifying host-level selection and genetic drift
alone. In this way, computational analysis of biological
systems allows to obtain new insights on the evolution-
ary forces shaping metabolic evolution of mutualistic
endosymbionts.

Methods

Differential gene retention of functional categories in the
chromatophore genome

To identify metabolic pathways preferentially con-
served in the chromatophore we carried out a statis-
tical analysis using the program GeneMerge [63].
First, we classified each of the genes in both genomes
(the chromatophore of Paulinella chromatophora
CCAC 0185 [5] and Symnechococcus sp. WH 5701) ac-
cording to the functional categories of KEGG orthol-
ogy (http://www.genome.jp/kegg/ko.html). Then we
carried out the statistical analysis with GeneMerge.
GeneMerge is a program written in Perl which allows
the identification of overrepresented functions or cat-
egories in a sample by using a hypergeometric distri-
bution [63].

Metabolic reconstruction of the iCV498 and the iCV265
models

A draft metabolic model was initially reconstructed by
identifying orthologous genes between Synechococcus sp.
WH 5701 and the metabolic model of Synechocystis sp.
PCC 6803 (iIN678) [26]. Because this draft metabolic
network had many inconsistencies we performed a man-
ual refinement. This consisted in reviewing literature
and databases to fill gaps in the model. We followed rec-
ommendations of [64].

The metabolic network of the endosymbiont was recon-
structed by identifying orthologs between the chromato-
phore and Synechococcus sp. WH 5701. Synechococcus sp.
WH 5701 is the closest free-living relative of the chromato-
phore with a sequenced genome [5].

The metabolic capabilities of both organisms were
tested with Flux Balance Analysis [65]. FBA is an
optimization algorithm based on lineal programming
provided in the Matlab COBRA toolbox [66]. FBA deter-
mines the flux distribution of all reactions in the model
by maximizing an objective function [30].

The functionality of metabolic models is evaluated by
their capacity to produce every metabolite that is ne-
cessary for in silico growth. For this, the biomass equa-
tion of Symechocystis sp. PCC 6803 was assigned as
objective function in both models. In silico growth was
simulated under autotrophic conditions with CO, and
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photons uptake set to 3.7 mmol x gDW ™ x h™' and
100 mmol x gDW ™' x h™!, respectively. These were
restrictive metabolites in the systems. Nutrient assign-
ment for metabolic functionality of the chromatophore
was based on the literature [5] and metabolite require-
ments predicted by the model for in silico biomass
production.

Network robustness analysis

In both models, robustness to gene deletions was ana-
lyzed by using the function singleGeneDeletion of the
COBRA toolbox. If deletion of a single gene decreases
the biomass production over 99%, compared with wild
type, this gene was consider as essential for biomass
production.

Simulation of metabolic reductive evolution in the
chromatophore

To simulate genome reduction, we used the metabolic
model of Symechococcus sp. WH 5701 (iCV498) as a
proxy of the free-living ancestor of the chromatophore
(Fig. 2). Genetic loss was simulated under Proposed
Nutrients and Randomized Nutrients intracellular condi-
tions. All nutrients were available simultaneously since
the beginning of the simulations. The algorithm starts
by randomly deleting a gene from the iCV498 model
(ie., setting its flux to zero) and then evaluating the im-
pact of this deletion in the metabolic functionality by
using FBA. If in silico growth rate in this network (lack-
ing a gene) was equal to or above the growth rate of a
free-living cyanobacteria (> 0.0884 h™'), then this gene
was considered as non-essential and permanently re-
moved. In contrast, if the growth rate was below
0.0884 h™" then this gene was considered as essential
and retained in the model. This process was repeated
until each of the genes in the model was evaluated. The
whole process is initiated 500 times which results in a
population of 500 reduced metabolic networks.

Genetic concordance between the 500 reduced meta-
bolic networks and chromatophore model (iCV265) was
analyzed as in [30]. In each of the 500 simulations, a
binary variable was assigned for each gene in iCV498 de-
pending on whether the gene is predicted to be con-
served or not among the 500 simulations. This allowed
us to determine the number of occurrences that a gene
is predicted as essential in the 500 simulated reduced
networks.

Measures of sensitivity and specificity were obtained
calculating the fraction of true-positives (fraction of
genes predicted to be conserved by the simulations and
present in iCV265) and false-positives (fraction of genes
predicted by the simulations and not present in iCV265)
for every cutoff (minimal fraction of simulated genomes
in which a gene must be present to be predicted as
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conserved in iCV265). Figure 5 plots true-positive and
false-positive (1-specificity) predictions for every cutoff
(1 to 500) to form a ROC curve. The area under the
curve represents how well the simulations recover gene
content in iCV265. The area under the curve was empir-
ically calculated as in [67].

Simulation of metabolic integration of the
chromatophore with its host

We performed this analysis by using the same algorithm
used in the simulation of reductive evolution. However,
this analysis was performed only in Proposed Nutrient
conditions (Fig. 2). In addition, a reaction simulating
hexose export from the chromatophore to the host was
defined as objective function and the growth rate equa-
tion (biomass equation) was fixed to 0.0884 h™'. Also, in
this simulation, a non-essential gene was defined as one
whose deletion does not affect the growth rate (0.0884 h™")
and the hexose export. Specifically, the rate of hexose
export could vary while being always greater than zero.
Otherwise, the gene was defined as essential.

In this analysis the model does not have access to all
13 nutrients at the same time from the beginning of the
simulation. Instead, we randomly allow the model to
have access to one of the 13 Proposed Nutrients (Fig. 2)
and subsequently applied our algorithm of reductive
evolution. Once we evaluated the impact of singly delet-
ing each one of the genes, we randomly allowed the
model to have access to a second nutrient and newly ap-
plied our algorithm of reductive evolution. The analysis
stops when iCV498 has access to all 13 nutrients and all
genes have been tested for essentiality.
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