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Abstract

Background: Understanding the genotype-phenotype map is fundamental to our understanding of genomes.
Genes do not function independently, but rather as part of networks or pathways. In the case of metabolic
pathways, flux through the pathway is an important next layer of biological organization up from the individual
gene or protein. Flux control in metabolic pathways, reflecting the importance of mutation to individual enzyme
genes, may be evolutionarily variable due to the role of mutation-selection-drift balance. The evolutionary stability
of rate limiting steps and the patterns of inter-molecular co-evolution were evaluated in a simulated pathway with
a system out of equilibrium due to fluctuating selection, population size, or positive directional selection, to
contrast with those under stabilizing selection.

Results: Depending upon the underlying population genetic regime, fluctuating population size was found to
increase the evolutionary stability of rate limiting steps in some scenarios. This result was linked to patterns of local
adaptation of the population. Further, during positive directional selection, as with more complex mutational
scenarios, an increase in the observation of inter-molecular co-evolution was observed.

Conclusions: Differences in patterns of evolution when systems are in and out of equilibrium, including during
positive directional selection may lead to predictable differences in observed patterns for divergent evolutionary
scenarios. In particular, this result might be harnessed to detect differences between compensatory processes and
directional processes at the pathway level based upon evolutionary observations in individual proteins. Detecting
functional shifts in pathways reflects an important milestone in predicting when changes in genotypes result in
changes in phenotypes.

Keywords: Computational systems biology, Metabolic pathway evolution, Positive directional selection, Fluctuating
selection, Fluctuating population size, Co-evolution

Background
Understanding the processes that drive lineage-specific
evolution is a fundamental challenge in comparative
genomics [1]. Many methods have been developed that
detect selection, including positive directional selection,
at the level of the protein encoding gene. However,

proteins function together in pathways and networks,
and metabolic pathways are a particularly well under-
stood system. When enzymes under positive selection
cluster in a pathway, this can be a sign of directional se-
lection on the pathway, but it can also potentially be ex-
plained by negative selection on the pathway with
compensatory co-evolution of individual enzymes. These
epistatic effects are an important part of the genotype-
phenotype map that while ignored by most existing
methods, are critical to predicting when changes in gen-
ome sequences result in changes to molecular, cellular,
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and organismal phenotypes. The importance of this
work is in characterizing the epistatic nature of the
genotype-phenotype map towards this type of prediction
of functional shift, using the particular example of meta-
bolic pathways. The same processes that apply to meta-
bolic pathways, apply to other types of pathways and
inter-molecular networks, as well as to intra-molecular
epistasis [2, 3]. At higher levels of organization, path-
ways can be redundant and can also have epistatic ef-
fects on each other, resulting in ridges in fitness
landscapes and more complex patterns of evolution [4].
These complex patterns of evolution are shaped by the
interplay of selection on phenotypes, mutational pro-
cesses, drift, and population genetic processes, which
must be understood together to characterize the
genotype-phenotype map.
A previous study examined the co-evolution of enzymes

in a pathway under negative (stabilizing) selection to pre-
serve pathway flux, which presents a null model for what
co-evolution looks like as pathways evolve under more
complex scenarios [5]. This previous work, using forward
evolutionary simulations [5] and computational analysis of
pathways like glycolysis [6] and pyrimidine biosynthesis
[7], established the dynamics of the systems, including an
important role for mutation-selection-drift balance over
longer evolutionary periods. A point to be emphasized is
that even when negative selection prevails at the pathway
level, individual enzymes can evolve more rapidly than the
cumulative function of the pathway as a whole within this
paradigm as selection does not act to preserve the activ-
ities of an individual enzyme in isolation from the rest of
the pathway. If individual enzymes are shifting in their ac-
tivities relative to the flux through the entire pathway,
then their control over the flux of the pathway will shift.
This corresponds to potential to shift the flux of the entire
pathway through changes to individual enzymes, the po-
tential for mutations of large effect in individual enzyme
encoding genes. The stability of flux control on evolution-
ary timescales can be measured by the number of genera-
tions a particular enzymatic step is the slowest and has
the most effect on flux.
Before examining selection, one key aspect that has

not yet been examined is how the system responds to
fluctuations in population size, for example as driven by
ecology (e.g. seasonally). An example of this is the sea-
sonal bottlenecking of mammals, reptiles, insects, fungal
and plant species [8–11]. Dramatic changes in popula-
tion size are observed during seasonal and ecological
shifts. One hypothesis here is that flux-control stability
may be affected by shifting population size. It is hypoth-
esized by us that flux-control step stability may be pro-
longed due to extreme changes in population size.
Similar to shifts in population size, one might also
expect interesting dynamics with fluctuating selection.

Moreover, adaptive shifts are expected to pull the
population out of the mutation-selection balance and
facilitate directional changes in fitness component
parameters. Many studies have looked for evidence of
pathway-level selection by examining pathways where
multiple individual genes show co-temporal evidence for
lineage-specific positive selection [12–16]. This will lead
to candidate hypotheses, but does not explicitly differen-
tiate between compensatory processes and directional
processes. Here the role of fluctuating population size
and selection as well as an adaptive directional shift in
flux were examined to evaluate patterns of co-evolution
and of flux control.

Methods
Simulated evolution of metabolic pathways
To evaluate the role of population genetic parameters in
biochemical pathway evolution, a population of cells
with a key metabolic pathway was evolved under differ-
ent selective and population genetic schemes. Evolution
involves proposing mutations in parameters of the sys-
tem of ordinary differential equations, followed by selec-
tion based upon their effects. The key elements of that
scheme were described previously [5] and are summa-
rized here. We simulate the evolution of a metabolic
pathway with five reversible reactions and one regulatory
loop that controls the rate of production of the first step
and one mass action reaction to remove the final prod-
uct from the system. The simplified kinetic model con-
tains features of glycolysis [17] and is shown in S1. This
includes the feedback loop (as an approximation to the
regulation of glycolysis) and the synthesis of final metab-
olite F as analogous to pyruvate in a linear pathway. The
model is described by a system of ordinary differential
equations where reactions are represented by reversible
Michaelis-Menten kinetics [18]. Each enzyme has pa-
rameters for enzyme concentration [Enzyme] (mmol/l),
the catalytic constant (kcat) (mmol/l/s), the Michaelis
constant for the substrate (KM) (mmol/l), the reversible
catalytic constant (kcatr) (mmol/l/s), and the Michaelis
constant for the product (KMr) (mmol/l). The kinetic
model has a single inhibitory reaction that is described
in the system by the inhibition constant KI (mmol/l).
Additional dynamics include a constant influx of metab-
olite A and a mass action reaction utilizing F. The steady
state solution of that system is calculated using the
COPASI environment [19]. Below, we describe two evo-
lutionary simulation frameworks with explicit and non-
explicit populations of cells containing the pathways.
First, we have introduced a forward evolutionary simula-

tion framework where a population of cells (an explicit
population) containing the synthetic pathways evolves
with Wright-Fisher dynamics with mutation and weighted
sampling with replacement between generations. We can
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assign different mutation rates and effects and use various
selective schemes to evaluate the fixation of introduced
mutations in order to test how the synthetic metabolic
pathways evolve. Each forward simulation was repeated 5
times. Mutations were introduced with a probability of
1.5*10−2 per parameter per individual per generation. The
mutational effects on the catalytic rate constant and en-
zyme concentration (both indicated by p below) are de-
rived from a standard normal distribution with variable
mean μn1 ,

μn1 ¼ −0:01ec
� ∙pn1−1 : ð1Þ

The mutational effects on the binding constants (K)
are described by a standard normal distribution with a
variable mean μn2 ,

μn2 ¼
1

−0:01ec∙Kn2−1
ð2Þ

The index value c is used to scale the mutational ef-
fects, with the following values for each constant:

c ¼

2:5�10−2 ; enzyme concentration

2:5�10−2; inhibition constant

1:0�10−2; catalytic constant
3:3

0�
10−4; reversible catalytic constant

1; product constant

3:3
0�
10−2; reversable product constant

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

ð3Þ
This mutational scheme allows for scaling across

orders of magnitude in kinetic parameters and generates
a distribution of mutational effects with a bias towards
slightly degrading change that is dependent upon the
activity and expression level of the protein.
Fitness of an individual is described as

F1 ¼ 1

1þ e− flux−650ð Þð Þ0:07
ð4Þ

Values in this logistic function control the asymptotic
fitness and the gradient of the flux to fitness relation-
ship. As enzymes reach limits of adaptation because of
the ability to utilize products, so do pathways, where the
end products are also subjected to the rules of binding
and catalysis. The asymptotic control of 650 and slope
of 0.07 are arbitrary, but are chosen to reflect the ultim-
ate utilizable flux.
Each of these simulations was run until the point of

mutation-selection balance was reached. The point of
mutation-selection balance was determined by the stabil-
ity of the fitness of the median individual across gener-
ational time as assessed by observation of approximately
equal rates of positive and negative changes.

Another evolutionary simulation framework used a
scheme where the Kimura fixation probability was used
to evaluate the fixation of proposed mutations, eliminat-
ing an explicit population and any probability of
multiple segregating changes and representing the
population by a single wild type individual. We have

ψ ¼ 1−e−2cNesp

1−e−2cNes
ð5Þ

to represent the fixation probability, where Ne is the
population size, c is the ploidy (haploid, c = 1), s is the
selective coefficient (s = f ’/f0–1, where f ’ is the fitness
after mutation and f0 before) and p is the initial fre-
quency of the allele in a population. The initial fre-
quency p was set to ½ rather than 1/N for
computational efficiency, giving the property that a neu-
tral mutation has a 50% chance of fixation, which scales
the selective coefficient. The effects of population size
contributed to experimental results in rising from a 0.5
frequency to fixation and the introduction of new muta-
tions was independent of population size.
This experimental setup with the Kimura fixation

probability was run for 200,000 generations per experi-
mental replicate and the rate-limiting step length was
calculated as was previously described [5]. Each instance
of population size was run for 30 replicates. Sensitivity
analysis was used to calculate the rate-limiting step for a
generation by changing one reaction step at a time by
10%, while others were fixed, and calculating the differ-
ence between the original and perturbed state fluxes,
generating a sensitivity coefficient. When a reaction is
rate-limiting, changing the reaction rate has a larger ef-
fect than it does for reactions that are not rate-limiting.

Experiments with fluctuating population size and
fluctuating selective pressure
A subset of experiments used an explicit population. For
these experiments with an explicit population, mutations
were introduced with a higher rate of 1.5*10−2 per parameter
per individual per generation (as compared with previous
studies). The previously published scheme [5] with selection
on flux only was used as the basis for all of the experiments.
Simulations with an explicit population had various schemes
for fluctuating the population size (summarized in Table 1).
Six experiments will be analyzed here: N1 with a periodicity
of 360 generations and amplitudes that range between 25
and 225 individuals, N2 with periodicity 45 generations and
amplitudes that range between 50 and 150 individuals, N3
with periodicity 360 generations and amplitudes with the
range of [50:150] individuals, N4 with periodicity 720 genera-
tions and amplitude with the range of [25:225] individuals,
N5 with periodicity 45 generations and amplitude with the
range of [25:225] individuals, N6 with periodicity 22.5
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generations and amplitudes with the range of [25:225]
individuals (see Additional file 1: Figure S2 for experi-
mental schemes). Corresponding to each population
scheme, three control experiments were examined:
the lowest population size, the median population
size, and the highest population size. For schemes N2,
N3 controls are the experiments with population size
50, 100, 150. For schemes N1, N4, N5 and N6 con-
trols are the experiments with population size 25,
150, and 225.
A number of fluctuating population size schemes were

implemented in the experiments with a calculated fixation
probability for each introduced mutation (Additional file 1:
Figures S3A, 3B). The amplitude was set to a range of 100
to 1,000,000 individuals for the following schemes with vari-
able periodicity: K1 5760 generations, K2 11,520 genera-
tions, K3 23,040 generations. For the periodicity of 23,040
generations, two more amplitudes were tested: experiment
K4 with the amplitude range of 100 to 1000 individuals, and
experiment K5 with the amplitude range of 100 to 10,000
individuals. Control experiments correspondingly contain
population sizes of 100, 10,000, and 1,000,000.

Two fluctuating selection schemes were tested here by
adjusting the asymptote of the fitness parameter that
was originally introduced in [5]:

F1 ¼ 1

1þ e− flux−a�650ð Þð Þ0:07
ð6Þ

Schemes following the same amplitude range [325,
a = 0.5; 975, a = 1.5] and different periodicity included
S1 with periodicity 45 and S2 with periodicity 360. Three
controls with a set to 0.5, 1.0, and 1.5 were evaluated
correspondingly. These changes in the a value result in
changes to the amplitude.

Simulations with positive directional selection
In simulating with positive directional selection, for the
first 2000 generations of simulations, the asymptotic par-
ameter X was equal to 650 (equilibrium state 1) repre-
senting the previously described selection on flux only.
The adaptive shift experiment contains the following
scheme. Two different asymptotic control parameters X
were applied to the fitness function as below.

F1 ¼ 1

1þ e− flux−Xð Þð Þ0:07
ð7Þ

After 2000 generations, X was set to 700, which trig-
gered a fitness recalculation in the system and enabled
the adaptation process to begin. After applying a positive
selection stimulus (X = 700), a new mutation-selection
equilibrium (equilibrium state 2) was established after
28,000 generations (30,000 generations after generation
0) with system adaptation to the new conditions. It was
additionally run for 2000 generations after equilibrium
state 2 (for a total of 30,000 generations) (Fig. 1).

Statistical analysis of flux control stability
To assess statistical significance of any step spending a
longer period as rate limiting, a permutation test was
utilized for the null hypothesis of no flux control stabil-
ity, which implicitly means that each reaction should
have the same average number of consecutive genera-
tions that it remains rate limiting. Thus, we chose the
average absolute deviation as our statistic of interest and
generated its null distribution in each case, in a manner
similar to that in [5]. Additionally, bootstrap confidence
intervals were constructed by first bootstrapping the
replicates, and then bootstrapping the values of consecu-
tive runs within each replicate. Error bars on the corre-
sponding figures indicate 95% confidence bounds,
obtained by taking the 2.5th and 97.5th percentiles from
the bootstrap sampling distribution.

Table 1 A summary of the parameters used across experiments
(amplitude and periodicity) is shown

Amplitude Periodicity

CN25 [25:25] -

CN50 [50:50] -

CN100 [100:100] -

CN150 [150:150] -

CN225 [225:225] -

N1 [25:225] 360

N2 [50:150] 45

N3 [5-:150] 360

N4 [25:225] 720

N5 [25:225] 45

N6 [25:225] 22.5

CK100 [100:100] -

CK10000 [10,000:10,000] -

CK1000000 [1,000,000:1,000,000] -

K1 [100:1,000,000] 5760

K2 [100:1,000,000] 11,520

K3 [100:1,000,000] 23,040

K4 [100:1000] 23,040

K5 [100:10,000] 23,040

C_0.5 [0.5:0.5] -

C_1.0 [1.0:1.0] -

C_1.5 [1.5:1.5] -

S1 [0.5:1.5] 45

S2 [0.5:1.5] 360
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Examination of evolution and co-evolution in experiments
under positive directional selection
Simulations where positive directional selection was ap-
plied using methodology that was similar to that which
has been described previously with an explicit population
of individuals [5]. Briefly, coevolution was estimated using
the kinetic parameter values (kcat, kcatr, Km, Kmr [enzyme])
in the median individual at each generation for each 2000
generations. Every 2000 generations, complete linkage
clustering was performed using absolute correlations as a
measure of relatedness between the rates of change of pa-
rameters of the system. The largest clusters that were sig-
nificant at the 0.05 level were used to identify co-evolving
parameters. A total of 16 periods of evolution were tested
and subjected to statistical analysis.

Statistical analysis of co-evolution during selection for
increased flux
Testing whether the rate of change of flux was associated
with the amount of inter-molecular co-evolution was a hy-
pothesis to be tested here. Each block of 2000 consecutive
generations was examined, for the change in flux from its
beginning to end, and the number of inter-molecular clus-
ters identified (reflecting parameter values from different
enzyme steps that showed evidence for co-evolution). A
mixed-effects model was employed, to account for the
multi-level data structure induced by the fact that observa-
tions within each replicate are correlated. Our statistic of
interest is the slope main effect describing the extent to
which an increase in the rate of change of flux is associated
with increased inter-molecular co-evolution. We analyzed
this non-parametrically by utilizing a permutation test to
generate a null distribution for the slope.

Results
It has previously been shown that flux control in meta-
bolic pathways is expected to be unstable under

mutation-selection-drift balance with simple population
genetic and selective schemes [5]. One question raised
from the observed results is when flux control stability
might emerge. The evolutionary ecology [8–11] and mo-
lecular evolution literatures [20] have emphasized an im-
portant role of fluctuating environments or population
sizes in complex evolutionary dynamics. Fluctuation of
both flux asymptotes (selection levels) and population
sizes have been evaluated in forward evolutionary simu-
lation frameworks to examine this in parameter-
controlled settings.

Experiments with an explicit population and a fluctuating
population size
The analysis started with an explicit population
framework that estimates the effect of a fluctuating
population size with different amplitudes and frequen-
cies (given a fixed mutation rate and effect distribu-
tion) on the evolutionary stability of rate-limiting
steps. A number of fluctuating population size
schemes and controls with fixed population sizes were
tested for stability of rate-limiting steps and are
shown here (Table 1, Additional file 1: Figure S2).
The schemes (Additional file 1: Figure S2) represent
different amplitudes and periodicities of population
size fluctuations. Schemes N2 and N5 have the same
periodicity, while schemes N1, N4, N5, N6 and N2,
N3 have the same amplitude. Rate-limiting step stabil-
ity was assessed when mutation-selection-drift balance
equilibrium was reached and flux changes over the
time-course didn’t show any directional fluctuations.
Figure 2 shows that fitnesses of all of the experiments
do not show local temporal adaptation to fluctuation
in the population size, where all observed changes
come from compensatory processes under mutation-
selection balance with no directional adaptive
changes. It is well understood that population size

Fig. 1 During positive directional selection, fitness (green), flux (blue) and the selected fitness value (red) over the time-course in the experiment
with an explicit population are shown
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alters the relative roles of drift and selection, with a
stronger role for selection in larger population sizes.
This is in fact observed in the population size effects
in Fig. 2. It is also understood that the dynamics of
fluctuating population sizes are driven by the bottle-
necks (smaller Ne values).
Controls for the experimental schemes were assessed

correspondingly at the highest, lowest, and middle point
of each scheme: with population sizes of 50, 100 and 150
for schemes N2, N3 and population sizes of 25, 150 and
225 for schemes N1, N4, N5 and N6. Calculation of the
average consecutive length of each reaction being rate-
limiting (Fig. 3) showed that scheme N5 has a statisti-
cally significant difference in the number of consecutive

generations spent as rate limiting, across the reactions.
This scheme has elevated amplitude as compared to the
scheme N2 and N3, but also has a smaller periodicity as
compared to schemes N1 and N4 and larger periodicity
as compared to scheme N6. Also it could be seen that
the experiment with higher amplitude and lower period-
icity (N6) has a signal for elevated rate-limiting step sta-
bility when compared to N2 and controls CN100, CN150,
and CN225, but there is not statistical support for differ-
ences across reactions. A further increase in periodicity
(N1 and N4) did not result in a signal for elevated rate-
limiting step stability. The strongest signal for differ-
ences in the consecutive number of rate limiting steps
across reactions was observed in N3. However, it should

Fig. 2 The fluxes from experiments with an explicit population that fluctuated in size are shown. a. The fluxes for fluctuating experiments N1
(green), N2 (blue), N3 (yellow), N4 (red) are shown. Black lines correspond to the control experiments with population sizes 25 (CN25), 50 (CN50),
100 (CN100), 150 (CN150), 225 (CN225). b. The fluxes for fluctuating experiments N2 (blue), N5 (purple), N6 (brown) are shown. Black lines
correspond to the control experiments with population sizes 25 (CN25), 50 (CN50), 100 (CN100), 150 (CN150), 225 (CN225)

Fig. 3 The distributions of the average length of rate-limiting steps between the reactions in the experiments with an explicit population and a
fluctuating population size are shown. The schemes for fluctuating experiments N1 (green), N2 (blue), N3 (yellow), N4 (red), N5 (purple), and N6
(brown) are shown. Black bars correspond to the control experiments with population sizes 25 (C25), 50 (C50), 100 (C100), 150 (C150), 225 (C225).
Nominal p-values were obtained via permutation tests with the null hypothesis that the average absolute deviation in the number of consecutive
generations for each step was zero
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be noted that one of the control experiments, CN50,
showed a p-value for unequal flux control across steps
of less than 0.05, at p = 0.04779, and this was the control
scenario specifically for schemes N2 and N3.

Experiments with a calculated fixation probability and a
fluctuating population size
With an explicit population, multiple mutations can
simultaneously segregate, an elevated amplitude with an
appropriate frequency (tuned to the mutation rate to en-
able response to environmental changes) in population
size fluctuations increased the evolutionary stability of
rate-limiting steps. However, because the increase of the
amplitude is computationally expensive in the explicit
population framework, an alternative population frame-
work involving the Kimura fixation probability that al-
lows the implementation of any population size in a
computationally feasible manner was used. Five different
schemes with an explicit fixation probability were stud-
ied here in order to estimate various ranges of ampli-
tudes. First, an elevated amplitude [100, 1,000,000] was
tested on different periodicity schemes (K1, K2, K3) cor-
responding to consecutive doubled increases in period-
icity. The resulting stability increase slightly correlates
with the periodicity increase (Fig. 4, Table 2). Two other
amplitude schemes K4 [100, 1000] and K5 [100, 10,000]

were examined with both having the same periodicity as
scheme K3. Scheme K4 showed the largest average rate-
limiting step stability out of all tested schemes. As in the
previous experimental design, the specific range of both
periodicity and amplitude can result in a signal of ele-
vated rate-limiting step stability. Analysis of finesses re-
vealed that schemes K1-K3 represent adaptive behavior
of the system (Fig. 5). Here, the range of population size
fluctuations independent of the periodicity represent
local directional selection on flux. This can be seen in
the fluctuations of the flux that follow the fluctuations in
population size. This behavior changes when the ampli-
tude of population size fluctuations is reduced to be less
extreme causing less intense selective pressure, as can be
seen for experiments K4 and K5. It should be noted that
the asymmetry in the responses to increasing and de-
creasing flux reflect the relative frequencies of flux in-
creasing (rarer) and flux decreasing mutations (more
common), according to the mutational scheme that has
been designed. This reflects the natural bias towards
“deleterious” mutations that is known. Controls for the
experimental schemes were assessed correspondingly at
the highest, lowest, and middle point of scheme K1, K2
and K3: with population size 100, 10,000 and 1,000,000.
There is also a noticeable decrease in the evolutionary

stability of rate-limiting step at reaction 5 in some of the

Fig. 4 The distributions of the average consecutive length of rate-limiting steps in the experiments with a calculated fixation probability for each
mutation and a fluctuating population size are shown. The schemes of fluctuating experiments K1 (green), K2 (red), K3 (blue), K4 (yellow), and K5 (purple)
are shown. Black bars correspond to the control experiments with population sizes 100 (CK100), 10,000 (CK10000), 1,000,000 (CK1M).). Nominal p-values
were obtained via permutation tests with the null hypothesis that the average absolute deviation in the number of consecutive generations for each
step was zero
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experiments including controls. Additional tests for dif-
ferences in rates of mutational acceptance at each step
did not show any deviations. Moreover, examination of
the fraction of time each reaction was rate-limiting
showed that all reactions have somewhat equal time be-
ing rate-limiting in all of the experiments (Table 2), al-
though less equal than suggested by the rate limiting
step stability. These findings suggest that the reduced
evolutionary stability of rate limitation for reaction 5 is
connected to the location of reaction as the last step in
the pathway and the interplay of the pathway flux with
the mass action procedure. Changing the mass action
procedure to ensure that it cannot be rate-limiting
causes this evolutionary instability to disappear.
Overall, elevated evolutionary stability of rate-

limiting steps could be found in a limited range of
parameters space (both of amplitude and period-
icity). As can be seen from the Figs. 6 and 7, differ-
ent range of the amplitude and periodicity cause
different system responses. An extremely large amp-
litude (Fig. 7a) brings an adaptive response of the
system fitness and decreased evolutionary stability of
rate-limiting steps (Fig. 4), while less extreme
schemes of parameter change (Figs. 6b and 7b) gen-
erate stable fitness with no directional changes and
elevated evolutionary stability of rate-limiting steps.
Some schemes (Fig. 6a) show no directional changes
but fail to show elevated evolutionary stability of
rate-limiting steps, as this appears to be tuned to
the mutation rate and effect size of the population
with the amplitude and frequency of the differences
that would enable a response to occur. Overall, this
does not support a hypothesized role for non-
equilibrium processes in generating different rates of
equilibration at different steps and corresponding

Table 2 The fraction of time each reaction spent rate-limiting
for the experiments with fluctuating population size and two
distinct population frameworks, with an explicit population and
with an explicit fixation probability are shown

Reaction1 Reaction2 Reaction3 Reaction4 Reaction5

Explicit population

C25 0.08 0.13 0.23 0.29 0.27

C50 0.12 0.12 0.21 0.23 0.32

C100 0.11 0.14 0.22 0.32 0.21

C150 0.14 0.15 0.22 0.25 0.24

C225 0.12 0.14 0.21 0.26 0.27

N1 0.10 0.13 0.23 0.28 0.26

N2 0.13 0.10 0.27 0.19 0.31

N3 0.10 0.11 0.16 0.38 0.25

N4 0.07 0.12 0.20 0.31 0.29

N5 0.08 0.20 0.32 0.27 0.12

N6 0.11 0.06 0.20 0.32 0.30

Fixation Probability

C100 0.04 0.04 0.15 0.30 0.47

C10000 0.04 0.04 0.14 0.29 0.48

C1000000 0.04 0.04 0.16 0.31 0.46

K1 0.17 0.17 0.20 0.25 0.21

K2 0.17 0.16 0.20 0.23 0.24

K3 0.14 0.16 0.19 0.25 0.27

K4 0.03 0.04 0.14 0.32 0.47

K5 0.05 0.04 0.15 0.30 0.47

Fig. 5 The fluxes of the experiments with a calculated mutational fixation probability and a fluctuating population size are shown. a. The fluxes of
fluctuating experiments K1 (green), K2 (red), K3 (blue) are shown. Black lines correspond to the control experiments with population sizes 100
(CK100), 10,000 (CK10000), 1,000,000 (CK1000000). b. The fluxes of fluctuating experiments K3 (blue), K4 (yellow), K5 (purple) are shown. Black lines
correspond to the control experiments with population sizes 100 (CK100), 10,000 (CK10000), 1,000,000 (CK1000000)
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different flux control during the adaptation process,
at least in the conditions tested here.

Experiments with an explicit population and a fluctuating
asymptotic flux
Along with a fluctuating population size, fluctuating op-
timal flux was suggested to make a difference in evolu-
tionary stability of rate-limiting steps, as this also has
the potential to lead to non-equilibrium dynamics. Fluc-
tuating selection in metabolic networks was studied pre-
viously and an increased robustness to changes was
reported as a result of this fluctuating selection scheme
[21]. Several schemes of fluctuating asymptotic flux were
tested here, but only two were able to establish
mutation-selection-drift balance because of numerical
instability in solving the set of differential equations. (S1
and S2 (Additional file 1: Figure S4)). As can be seen in
Fig. 8, there is no significant signal for elevated rate-
limiting step stability in either experiment, although a

slight increase in reaction stability in S2 was detected.
Controls for the experimental schemes were assessed
correspondingly at the highest, lowest, and middle point
of schemes with a set to 0.5, 1.0 and 1.5. Fitness
behavior over evolutionary time resembles adaptive
changes for both schemes studied here (Additional file 1:
Figure S4). A closer look at the combined plot of the
amplitude and flux (Figs. 9 and 10) revealed that in both
experiments, adaptive directional changes in flux corres-
pond to fluctuations of asymptotic flux coefficients (a),
as with population size. These observations support the
findings above about the absence of elevated evolution-
ary stability of rate-limiting steps when fitness direc-
tional changes are present.

Positive directional selection in an explicit population
To complement evolution with negative selection, a
scheme involving positive selection was introduced. Se-
lective pressures here directionally changed the flux. The

Fig. 6 Fluxes overlaid with the experimental design are shown for fluctuating experiments with an explicit population and a fluctuating
population size are shown. a. The flux (blue line) and the experimental design (black line) for experiment N2 are shown. b. The flux (purple line)
and the experimental design (black line) for experiment N5 are shown
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Fig. 7 Fluxes overlaid with the experimental design are shown for fluctuating experiments with an explicit population and a fluctuating
population size are shown. a. The flux (blue line) and the experimental design (black line) for experiment K4 are shown. b. The flux (yellow line)
and the experimental design (black line) for experiment N5 are shown

Fig. 8 The distributions of the average lengths of rate-limiting steps between the reactions in the fluctuating selection experiments with an explicit
population and fluctuating asymptotic flux, S1 (green), S2 (red), are shown. Black bars correspond to the control experiments with a = 0.5; (C_0.5),
a = 1.00 (C_1.0), and a = 1.5 (C_1.5) correspondingly
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co-evolution of enzyme activities across the pathway
during adaptation is poorly understood, but presents a
major challenge in generating a basic understanding of
adaptive processes and differentiation from compensatory
processes reflecting stabilizing selection. Co-evolutionary
analysis was performed for the positive selection experi-
ment with an explicit population. Cluster analysis esti-
mated co-evolutionary relationships between various
enzymatic parameters at different stages, the pre-
adaptation equilibrium state (stage 1), during adaptation
(stage 2–8), and late adaptation towards equilibrium (stage
9 on) (Fig. 1). As was expected, there are differences be-
tween the described stages (Fig. 11). Both equilibrium
stages (1 and 16) contain clustered enzymatic parameters
that belong to the same enzyme (Enzyme A and Enzyme
C for stage 1 and Enzymes B and C for stage 16), similar
to patterns observed for negative selection on flux only in
previous studies [5]. The stages not in equilibrium showed
different distributions of clusters. Stage 2 has the first
2000 generation after adaptive shift and is similar to stage
1 by containing intra enzyme clustered parameters. Stages
3–8 all contain various combination of clusters with inter-
and intra-enzyme parameters clustered together, but never
just intra-enzymes parameters clustered alone.
Since mutations that required increasing flux values

come from the beneficial part of the mutational distribu-
tion, this process became time consuming, in taking
28,000 generations to reach equilibrium. The rate of
adaptation varies at the different stages. The earlier and
middle stages (2–5) show more rapid accumulation of
beneficial changes and are responsible for most of the
new equilibrium flux value gain, as might be expected.
Mixed-effects regression analyses were performed in

order to assess the association between flux change and
the ratio/count of clusters across stages of adaptation,
shown Fig. 12.
Mixed-effects regression analyses were performed in

order to assess the association between flux change and
the ratio/count of clusters across stages of adaptation,
summarized numerically in Table 3 and graphically in
Fig. 12. A statistically significant association was found
between the count of inter-molecular clusters and the
change in flux at the 0.05 level (p = 0.0424). However, a
corresponding association was not found between the
ratio of inter-molecular clusters and the change in flux
at the 0.05 level (p = 0.3264). Overall, this provides some
suggestive evidence that high changes in flux may have
an effect on the amount of inter-molecular coevolution
occurring at any given time and can be informative in
analyzing the sequence co-evolution of enzymes in
metabolic pathways from comparative genomic analysis.
The exact patterns will be indicative of features of the
enzymes and the fitness landscape.

Discussion
Here, various demographic and selective scenarios were
tested in order to find out if specific population and
selection parameters when systems may be out of equi-
librium can give rise to a more evolutionary stable rate-
limiting steps, following from previous work [5]. Further,
we sought to examine if there was a systematic differ-
ence in the patterns of co-evolution between positive di-
versifying selection and compensatory covariation that
might be predictive. Our findings here suggest that there
is a specific range of population size fluctuations that
cause elevated evolutionary stability of rate-limiting
steps. It can be seen from two experimental frameworks,
with an explicit population where scheme N5 generated
the highest stabilities, while a decrease in periodicity
representing more extreme shifts in population size
don’t lead to an increase in the evolutionary stability of
rate-limiting steps, but instead slightly decrease it (N6).
Increased amplitude was shown to have a major impact
in increasing rate-limiting steps stability. To investigate
further the influence of the amplitude in fluctuating
population size experiments, a switch to a non-explicit
population experimental scheme was necessitated as the
explicit scheme become too computationally intensive.
A number of schemes were implemented in the exper-

iments with a calculated mutational fixation probability
(Additional file 1: Figure S3). Surprisingly, assigning the
amplitude to a higher range [100; 1,000,000] and main-
taining the periodicity that was used in the previous ex-
periments (explicit N2) didn’t give an increased rate-
limiting step stability. Instead, the average consecutive
length was slightly smaller than controls. It was possible
that the values of periodicity and amplitude were too

Fig. 9 The fluxes of the experiments with an explicit population and
fluctuating asymptotic flux, S1 (green), S2 (red), are shown. Black lines
correspond to the control experiments with a = 0.5 (C_0.5), a = 1.00
(C_1.0), and a = 1.5 (C_1.5) correspondingly

Orlenko et al. BMC Evolutionary Biology  (2017) 17:117 Page 11 of 16



extreme and more relaxed amplitude and periodicity
values were tested. Experimental scheme K4 showed the
highest signal of stability from our sampling, suggesting
that a reduced amplitude has a major impact on rate-
limiting step evolutionary stability and that significant
stability increase potentially exists in a certain period-
icity and amplitude range, which would need to be
established further by parameter sampling.
Positive diversifying selection resulted in an increase

in the co-evolution of parameters that belong to differ-
ent enzymes when compared with compensatory covari-
ation under negative selection. In previous work [5], it
was observed that more complex stabilizing selective or
mutational schemes could also give rise to increases in
inter-molecular parameter co-evolution, so the null
model of stabilizing selection needs to be properly tuned
to use this result in the identification of positive

directional selection. The particular results observed in
this study and the nature of the ridge in the fitness land-
scape are dependent upon the structure and the con-
straints of the pathway, which is treated in isolation
here. While in an actual cell pathways may be less iso-
lated and this is likely to change the size and nature of
the fitness ridge of optima, we expect that the conclu-
sions of this and prior work upon which this builds [5]
are generalizable.
It had been hypothesized that constant adaptation

when out of equilibrium would lead to different rates
of adaptation in different parts of the pathway and
the emergence of flux control, but this was not what
was observed. This observation relates to patterns of
evolution in changing environments that correspond
to generalists vs. specialists. Specialist species are af-
fected by isolation of their populations; they follow

Fig. 10 Fluxes and experimental designs of experiments with an explicit population and a fluctuating asymptotic flux are shown. a. The flux (red
line) and the experimental design (black line) for experiment S1 are shown. b. The flux (green line) and the experimental design (black line) for
experiment S2 are shown
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scenarios where there is constant rapid local adapta-
tion. Specialists are known for stronger genetic differ-
entiation among populations due to small and
sometimes fluctuating population sizes with high fre-
quencies of genetic bottlenecks [22]. Scenarios where
this constant rapid adaptation does not happen are
found for more generalist species. Generalists often
have high genetic diversities in their populations and
low genetic differentiation among them [23, 24]. This
is the consequence of the absence of genetic bottle-
necks and strong gene flow among populations. In

regards to the overall evolutionary rate it is thought
that specialists adapt faster than generalists to any
given set of environmental conditions [25]. Several
studies have reported rates of adaptation that are
consistent with the prediction that specialists evolve
faster than generalists [26, 27]. Long-term environ-
mental variation may not lead to the evolution of
generalists in all population genetic scenarios. Instead
repeated evolution of specialists adapted to each set
of growth conditions happens, as has been observed
in adaptation of bacteriophage to alternate hosts [28].

Fig. 11 Clusters for significant co-evolving parameters during each evolutionary time regime were generated. This cluster analysis includes early
and late periods of equilibrium surrounding a longer period of adaptation. Parameters that show the same color belong to the same cluster and
co-evolve together, while black parameters are not significantly part of any cluster
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Conclusion
This study discovers that demographic and ecological vari-
ation has a direct impact on the evolutionary dynamics of
metabolic pathways. Population size fluctuations when fol-
lowing a particular scheme with tuned periodicity facilitates

increasing the evolutionary stability of flux-control points in
metabolic pathway. Adaptation itself is a factor that changes
co-evolutionary dynamics and adds a particular signal on
top of the corresponding dynamics associated with stabiliz-
ing selection and compensatory processes. While at the

Fig. 12 The association between the change in flux and the time period (and associated evolutionary regime) are compared with the count of
inter-molecular pairwise parameter clusters (a) and the ratio of inter-molecular to intra-molecular pairwise clusters (b) per period
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mutation-selection-drift balance in a simple selective
scheme, compensatory intra-enzyme mechanisms dominate,
while during adaptive directional processes, inter-molecular
parameters within the system co-evolve with stronger sig-
nals. Overall, these studies give a picture of the nature of
pathway evolution under more complex selective and popu-
lation genetic schemes and gives the potential to develop
methods that might detect such scenarios from comparative
sequence evolution patterns.

Additional files

Additional file 1: Table S1. This table shows the ratio of positive
fitness change counts, negative fitness change counts, total positive
fitness change, total negative fitness change and total fitness change per
evolutionary simulation step. Table S2. This table shows the average
fitness for the first 1000 generations of each simulation step, the average
fitness for the second 1000 generations of simulation step and p-values of
Mann-Whitney’s test comparing fitness values of the first and the second
halves of the simulation step. Figure S1. The simplified pathway that was
simulated is shown. This pathway contains features from glycolysis [26]. A
constant concentration of compound A is converted to compound F and the
steady state flux is measured. Figure S2. Schemes of the experiments with
an explicit population and a fluctuating population size are shown. The
schemes for experiments N1 (green), N2 (blue), N3 (yellow), N4 (red), N5 (pur-
ple), N6 (brown) are shown. Black lines correspond to the control experiments
with population sizes 25, 50, 100, 150, and 225. Figure S3. Schemes of the ex-
periments with a calculated fixation probability and with fluctuating popula-
tion size. A. The schemes for experiments K1 (green), K2 (red), K3 (blue) are
shown. B. The schemes for the experiments K3 (blue), K4 (yellow), K5 (pur-
ple) are shown. Black lines correspond to the control experiments with popu-
lation size 100, 1000, 1,000,000. Figure S4. Schemes of the experiments with
an explicit population and fluctuating asymptotic flux. S1 (green) and S2 (yel-
low). Black lines correspond to the control experiments with a set to 0.5, 1.0,
1.5, corresponding to flux amplitudes of 325, 650, and 975. (DOCX 9986 kb)
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