
RESEARCH ARTICLE Open Access

Pre-Quaternary divergence and subsequent
radiation explain longitudinal patterns of
genetic and morphological variation in the
striped skink, Heremites vittatus
Felix Baier1,3* , Andreas Schmitz2, Hedwig Sauer-Gürth1 and Michael Wink1

Abstract

Background: Many animal and plant species in the Middle East and northern Africa have a predominantly
longitudinal distribution, extending from Iran and Turkey along the eastern Mediterranean coast into northern
Africa. These species are potentially characterized by longitudinal patterns of biological diversity, but little is known
about the underlying biogeographic mechanisms and evolutionary timescales. We examined these questions in the
striped skink, Heremites vittatus, one such species with a roughly longitudinal distribution across the Middle East
and northern Africa, by analyzing range-wide patterns of mitochondrial DNA (mtDNA) sequence and multi-trait
morphological variation.

Results: The striped skink exhibits a basic longitudinal organization of mtDNA diversity, with three major mitochondrial
lineages inhabiting northern Africa, the eastern Mediterranean coast, and Turkey/Iran. Remarkably, these lineages are of
pre-Quaternary origin, and are characterized by p-distances of 9–10%. In addition, within each of these lineages a more
recent Quaternary genetic diversification was observed, as evidenced by deep subclades and high haplotype diversity
especially in the Turkish/Iranian and eastern Mediterranean lineages. Consistent with the genetic variation, our
morphological analysis revealed that the majority of morphological traits show significant mean differences between
specimens from northern Africa, the eastern Mediterranean coast, and Turkey/Iran, suggesting lineage-specific trait
evolution. In addition, a subset of traits exhibits clinal variation along the eastern Mediterranean coast, potentially
indicating selection gradients at the geographic transition from northern Africa to Anatolia. The existence of allopatric,
morphologically and genetically divergent lineages suggests that Heremites vittatus might represent a complex with
several taxa.
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Conclusions: Our work demonstrates that early divergence events in the Pliocene, likely driven by both climatic and
geological factors, established the longitudinal patterns and distribution of Heremites vittatus. Subsequent radiation
during the Pleistocene generated the genetic and morphological diversity observed today. Our study provides further
evidence that longitudinal diversity patterns and species distributions in the Middle East and northern Africa were
shaped by complex evolutionary processes, involving the region’s intricate geological history, climatic oscillations, and
the presence of the Sahara.

Keywords: Phylogeography, Western Palearctic, Cline, Latitude, Longitude, Climate oscillation, Heremites vittatus,
Intraspecific variation

Background
Intraspecific patterns of biological diversity are often the
result of geological and climatic processes in the past. In
the western Palearctic, the best understood example is
the widespread presence of latitudinal gradients in gen-
etic diversity in European taxa [1–4]. During interglacial
periods in the Pleistocene, these species rapidly and re-
peatedly extended from Mediterranean refugia into cen-
tral and northern Europe. Genetic bottlenecks during
the cyclical expansions led to allele loss and decreased
heterozygosity, and ultimately a reduction in genetic di-
versity in northern areas. While latitudinal gradients can
be found in many species in Europe, the geographical
shape of southern Europe made longitudinal movements
more infrequent. Longitudinal patterns of genetic diver-
sity are thus often confined to the different Mediterra-
nean peninsulas, and can be difficult to disentangle from
latitudinal gradients [5, 6].
Compared to continental Europe, relatively little is

known about the structure and evolution of biological
diversity in other regions of the Palearctic, notably in the
Middle East and northern Africa [7–12]. Several species
in northern Africa display post-glacial latitudinal range
expansions, often into Europe despite the potential bar-
rier of the Mediterranean Sea [13]. Remarkably, many
species in this region share a roughly longitudinal distri-
bution extending from Iran and Turkey along the east-
ern Mediterranean coast into northern Africa [6]. Unlike
in Europe, strong sea barriers are absent in this region,
which potentially facilitated longitudinal movements. In
addition, the presence of the Sahara as a southern
barrier for many species may have further supported
longitudinal migration. European species with more pro-
nounced longitudinal patterns of genetic diversity often
originated in Asia Minor and expanded westwards along
the north Mediterranean coast. As such, Asia Minor has
become known as a center of genetic diversity in the
Middle East [14–16]. However, whether species that ex-
panded from Asia Minor into northern Africa instead of
Europe are also characterized by longitudinal patterns re-
mains poorly understood. More generally, few studies have
addressed the biogeographic mechanisms and underlying

evolutionary timescales in species with longitudinal distri-
butions in this region [5, 6, 17, 18]. Here, we examined
these questions in the striped skink, Heremites vittatus, a
scincid lizard with a predominantly longitudinal distribu-
tion across the Middle East and northern Africa.
Lizards of the genus Mabuya sensu lato (s.l.) are some

of the most widely distributed skinks with a circumtropi-
cal distribution. For a long time, these skinks were col-
lectively allocated to the genus Mabuya s.l., until the
Afro-Malagasy Mabuya taxa were assigned to the genus
Euprepis [19, 20], and later re-assigned to Trachylepis
[21]. The Middle Eastern Mabuya s.l. species were prelim-
inarily included into Trachylepis, although they form a sep-
arate radiation [22]. To account for this, the genus
Heremites was recently revalidated for these species, in-
cluding H. vittatus, H. auratus, and H. septemtaeniatus
[23]. Of these, H. vittatus has the largest distribution range,
occurring in Algeria, Tunisia, Libya, Egypt, Israel, Jordan,
Lebanon, Cyprus, Syria, Turkey, Iraq and Iran [24–29].
Despite its wide distribution, the striped skink has been
regarded as a monotypic species [30]. In several parts of
this large distribution range, e.g., in Turkey, Iran, and
Lebanon, morphometric studies uncovered considerable
morphological variation within local populations and differ-
ences between populations on a regional scale [31–36]. Part
of this variation is likely due to adaptation to local environ-
mental conditions, rather than phylogenetic divergence.
For example, in a population in southeastern Turkey, uni-
form skinks are more abundant in habitats with low grass
cover, while striped specimens are more abundant in habi-
tats with high grass cover, indicative of disruptive selection
by visual predators [36]. A distribution model for H. vitta-
tus demonstrated that the species is predominantly found
in areas with high winter precipitation (>300 mm), and
rainy winters may be the driving factor behind its distribu-
tion [37]. Populations in northern Africa inhabit wetlands
and oases [24], while those in Iran and Turkey live in
mountainous areas [26]. Due to its poor dispersal skills and
its dependence on humid habitats in the arid Middle East-
ern environment, the striped skink is a sensitive indicator
of geographic processes that have driven the distribution
and intraspecific evolution of animals in this region [38].
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In this work, we combined investigations of mtDNA
(cytochrome b) sequence and multivariate morphological
variation across the species’ distribution range, and pro-
vide the first comprehensive analysis of the biogeography
and evolutionary history of the striped skink. We chose
to study both genetic and morphological variation be-
cause evolutionary processes can affect genetics and
morphology in different ways and at different times dur-
ing the period of divergence. Unlike putatively neutral
molecular markers, morphological traits are under vary-
ing degrees of selection; thus, it may be expected that
morphological traits can show both clinal variation as a
result of local adaptation, as well as trait conservation as
a result of deep divergence events [39]. Together, in-
sights from genetic and morphological variation can thus
provide for a richer and more integrated understanding
of the underlying evolutionary processes [39, 40].

Results
Sequence diversity
Among the alignment of 394 nucleotides, 94 (24%) posi-
tions were variable and 78 (20%) were parsimony in-
formative across the Heremites vittatus sequences. The

46 H. vittatus sequences comprised 33 individual haplo-
types with a haplotype diversity of H = 0.9816, which we
assigned to 11 major haplogroups (MHGs) (Figs. 1, 2;
see Table 1 for p-distances between MHGs) based on
the Bayesian PTP model (Additional file 1). The haplo-
type network contained three sub-networks, correspond-
ing to haplotypes from (1) the populations in the eastern
Mediterranean (MHGs 1–5), (2) Libya/Tunisia (MHGs
6–7), and (3) Turkey/Iran (MHGs 8–11) (Fig. 3).

Phylogeography and divergence times
Our mitochondrial phylogeography supported five key find-
ings (Figs. 3, 4, 5; Additional file 2). (1) Both Heremites aur-
atus and Heremites vittatus formed well-supported lineages
that diverged 13.3 million years ago (mya), and were sepa-
rated by a mean p-distance of 0.189 ± 0.017. (2) Inside H.
vittatus, two highly supported lineages at the periphery of
the distribution range branched off early. The Turkish/Iran-
ian lineage (MHGs 8–11) branched off first 3.6 mya (mean
p-distance to eastern Mediterranean lineage: 0.090 ± 0.012;
mean p-distance to Tunisian/Libyan lineage: 0.101 ± 0.013).
The Tunisian/Libyan lineage (MHGs 6–7) diverged 2.5
mya (p-distance to the eastern Mediterranean lineage:
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0.092 ± 0.011); within this lineage, the Tunisian samples
(MHG 6) and the Libyan sample (MHG 7) diverged 1.9 mya
(p-distance: 0.079 ± 0.013). (3) In the BEAST analysis, the
eastern Mediterranean lineage bifurcated into a northern
(MHG 4: Lebanon; MHG 5: Syria) and a southern lineage
(MHG 1: Cyprus, Jordan, Israel; MHG 2: Egypt; MHG 3:
Jordan, Lebanon, southern Syria) approximately 1.3
mya (p-distance: 0.039 ± 0.007). (4) The samples from
Cyprus constituted a monophyletic group that di-
verged from the Israeli/Jordanian lineage ca. 0.5 mya (p-
distance: 0.015 ± 0.005). (5) H. auratus comprised two deeply
diverged lineages: The sample from northeastern Iran
(Ha_IRN2) was sister to the samples from western Iran (p-
distance: 0.122 ± 0.015); these two lineages diverged 4.1 mya.
Compared to the samples from western Iran, the Ha_IRN2
sample had a short branch length in the RAxML tree.

Morphological analysis
We first performed a non-metric multidimensional scaling
(NMS) analysis to assess the morphological variation in an
unbiased way. A 3D plot of the first three NMS axes did
not reveal any discrete grouping of samples in the morpho-
space (Fig. 6). To test for an effect of geographical location
on the position in the morphospace, we color-coded
samples according to their latitude (Fig. 6a) and longitude
(Fig. 6b). Interestingly, both latitude and longitude had sig-
nificant effects on the position of samples in the morpho-
space (multivariate multiple regression; latitude: η2 = 0.27

[0.15–0.43], F = 17.23, P = 1.4e-9; longitude: η2 = 0.35
[0.21–0.51], F = 25.74, P = 2.45e-13), such that samples re-
vealed a southwest–northeast differentiation.
These results could be explained by morphological diver-

gence between the three main mitochondrial lineages
(Tunisian/Libyan, Turkish/Iranian, eastern Mediterranean)
in our phylogeographic analysis, because these lineages are
distributed in an allopatric, roughly longitudinal way. To
examine this hypothesis in our morphological dataset, we
assigned specimens based on their collection localities to
three morphological groups (western, central, eastern) coin-
ciding with the putative ranges of the three mitochondrial
lineages (Fig. 7a). Their ranges are delimited by prominent
barriers for animal dispersal: The Tunisian/Libyan lineage
is separated from the eastern Mediterranean lineage by the
arid Marmarica region (located between the Cyrenaica and
the Nile delta) [41], while the eastern Mediterranean
lineage is separated from the Turkish/Iranian lineage by the
Amik plain in southern Turkey (Fig. 7a) [42, 43]. We then
tested traits individually for significant mean differences be-
tween these groups. We excluded binary and meristic traits
that showed little variation and are unlikely to contribute to
the pattern of variation, and focussed on five meristic and
14 mensural traits. Consistent with the hypothesis of mor-
phological divergence between the mitochondrial lineages,
we found that the majority of traits showed significant
mean differences between the western, central, and eastern
group (13/19 traits, 68%; Table 2, Fig. 7f).

Fig. 2 Variable sites among the 33 haplotypes in Heremites vittatus. Numbers at the top refer to the position of the variable site in the sequence
alignment. A dot indicates an identical nucleotide compared to the reference sequence (CYP1)
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Alternatively, the effect of latitude/longitude on the pos-
ition in the morphospace could be explained by clinal
variation within geographical groups. While the western
(Algeria, Tunisia, Libya) and eastern (Turkey, Iran) groups
have a roughly longitudinal distribution, the central group
(Egypt, Israel, Jordan, Lebanon, Cyprus, Syria) is pre-
dominantly distributed along the latitudinal dimension
(Fig. 7a). To account for these different geographical ex-
tensions, we regressed traits against longitude for the
western and eastern group, and against latitude for the
central group. 10 of 19 traits (53%) showed evidence of cli-
nal variation in one geographical group. No trait showed

evidence for clinal variation in more than one group. Of
the 10 traits, seven showed clinal variation in the central
group. Two traits showed clinal variation in the western
group, and one trait in the eastern group (Fig. 7f).
We next investigated how mean differences between

groups overlap with clinal variation within groups. Of 19
traits, three (16%) showed evidence of neither mean nor
clinal variation (Fig. 7b). Six traits (32%) showed evi-
dence of only mean differences (Fig. 7c), while three
traits (16%) showed evidence of only clinal variation.
Seven traits (37%) showed evidence of both mean and
clinal variation. Of the latter seven traits, five showed
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clinal variation in the central group (Fig. 7d-e). Taken
together, our results suggest that the majority of mor-
phological traits in H. vittatus exhibit mean differences

between geographical groups with either no evidence for
clinal variation or clinal variation along the eastern
Mediterranean coast.
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Discussion
Historical biogeography
Our mitochondrial phylogeography suggests that Here-
mites vittatus diverged from H. auratus in the late Mio-
cene (13.3 mya; range 7.9–19.7 mya), consistent with a
previous estimate that dated this split to 10.54 mya [44].
Heremites vittatus likely emerged as a distinct species in

southwest Asia, where the Heremites radiation origi-
nated [23]. In the mid Pliocene (3.6 mya; range 2.3–5.2
mya), the ancestors of the eastern Mediterranean and
northern African lineages split off from the ancestral
Irano-Anatolian lineage and became allopatric. This di-
vergence event coincided with prominent geological
events in Anatolia during the late Neogene. The
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Anatolian mountain ranges, e.g., the Amanus and Taurus
mountains, created geographical barriers between the
Anatolian and eastern Mediterranean regions in the
South. The vast lake system in central Anatolia delimited
the distribution into western Anatolia. Other emerging
dispersal barriers subsequently supported this divergence,
notably the Amik plain in southern Turkey. As a result, vi-
cariant cladogenesis, frequent among other animals in this
geologically complex region (e.g. green lizards), may ex-
plain the divergence of the Irano-Anatolian lineage and
the ancestors of the eastern Mediterranean and northern
African lineages [14, 43, 45, 46].
During much of the Pliocene, the climate was rela-

tively warm and humid in the Palearctic [47], thus po-
tentially facilitating the colonization of northern Africa
from the eastern Mediterranean. In the late Pliocene,
however, the climate suddenly aridified and became
colder [41, 48, 49]. Around this time, the northern
African lineages split off (2.5 mya; range 1.6–3.6 mya).
Consistent with the preference of the modern species for
more humid habitats in northern Africa [24, 37], this cli-
matic turn may have restricted the species to the
remaining humid regions, and isolated them from popu-
lations inhabiting the eastern Mediterranean coast. Simi-
lar divergence events coinciding with the transition from
hotter/wetter to colder/drier climate in the late Pliocene/

early Pleistocene have previously been observed in other
animal species of the Mediterranean (e.g., tree frogs,Typh-
lops vermicularis) [8, 11, 50]. Notably, H. vittatus is the
only Heremites species in northern Africa today, suggest-
ing that other Heremites species never migrated into
northern Africa, or were unable to withstand the drastic
climatic changes at the Pliocene/Pleistocene transition.
During the Pleistocene, the Sahara increasingly aridi-

fied, which restricted more humid habitats to a few
coastal areas (e.g., Cyrenaica) and oases [41, 51]. This
aridification may have led to the further fragmentation
of the northern African lineage, as evidenced by the
deep split between the Tunisian and Libyan haplotypes
in the Cyrenaica (1.9 mya; range 1.0–2.9 mya). Although
these climatic cycles must have influenced distributions
during the Pleistocene, the mitochondrial lineages
remained separate and apparently did not mix. The ex-
tant, allopatric populations in Libya, Tunisia, and Algeria
are thus potential remnants of a once more extended
distribution in northern Africa. Similar fragmentation
processes in the Pleistocene likely affected other animal
species in northern Africa currently limited to the Cyre-
naica and coastal areas of Tunisia and Algeria, such as
lizards of the genus Ophisops [12].
In the late Pleistocene, the Irano-Anatolian and east-

ern Mediterranean lineages further radiated, establishing
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the mitochondrial diversity observed today. The
Egyptian, Cypriot-Israeli-Jordanian, Jordanian-Lebanese-
Syrian, Lebanese, and Syrian major haplogroups (MHGs)
all evolved into monophyletic lineages during this time.
Based on our dataset, most of these lineages occupy non-
overlapping regions, suggesting that these haplotypes are
not admixed. One interesting exception is the co-
occurrence of the Jordanian-Lebanese-Syrian MHG with
the Cypriot-Israeli-Jordanian MHG at one locality in
Jordan (Al Himma), raising the possibility of admixture
between these lineages in this region. In our dataset, the
monophyletic lineage on the island of Cyprus is sister
to the lineages in Israel and Jordan and diverged ap-
proximately 0.5 mya (range 0.3–0.8 mya). During the
Pleistocene, Cyprus was likely never connected to the
mainland through a land bridge [25, 52], so that the
species must have reached Cyprus via overseas disper-
sal, which has also been suggested for other species in
Cyprus, e.g., Hyla savignyi [8, 25, 53]. However, these
hypotheses may not be correct if the true mainland
source of the Cypriot population was not included in
our dataset.
Although our study shows again the usefulness of fast-

evolving mtDNA genes to dissect more recent intraspe-
cific divergence in Palearctic reptiles (e.g., [54–58]), we
cannot rule out the possibility of discordant evolutionary
histories of the mitochondrial and nuclear genome
[59–61]. The mtDNA lineage evolution described in
this study should thus be corroborated with nuclear
sequence variation before additional inferences (e.g.
for taxonomic purposes) are made on the evolution-
ary history of this complex.

Morphological evolution
Our multidimensional scaling analysis suggests that mor-
phological variation in Heremites vittatus is linked to lati-
tude and longitude. At the level of individual traits, most
show mean differences between three morphological
groups (western, central, eastern) coinciding with the puta-
tive ranges of the three old mitochondrial lineages. We
note that while these results are suggestive, proof of con-
cordant genetic and morphological variation would require
data collection from identical specimens. Interestingly, we
further find that these traits show either (1) no evidence
for within-group clines, or (2) clinal latitudinal variation in
the central (eastern Mediterranean) group.
The first category, mean differences with no evidence for

within-group clines, argues for a close association of trait
variation with the three old mtDNA lineages. For example,
the western (northern African) group has an average of
18.2 subdigital lamellae, while the central (eastern Mediter-
ranean) and eastern (Turkish/Iranian) group have on aver-
age 16.4 and 16.1, respectively, with no evidence for a clinal
increase of lamellae in the central group (Fig. 7c). Thus, al-
though they are likely not closely related the eastern and
central group share a similar number of subdigital lamellae,
which may reflect an ancestral state that was independently
maintained in both lineages. By contrast, the higher number
of subdigital lamellae in the western group may be an adap-
tation to the xeric environmental conditions across north-
ern Africa because sand-dwelling lizards often possess
pedal specializations that evolved as (convergent) ad-
aptations to sandy habitats [62]. Mean differences be-
tween geographical groups can thus be explained by
lineage-specific ancestral or derived trait states.

Table 2 Within-group mean and range of traits with significant mean differences between groups. Trait differences between groups
were tested for significance with Dunnett’s modified Tukey-Kramer (DTK) test

Western (W) Central (C) Eastern (E) Significance

Trait mean (min-max) mean (min-max) mean (min-max) W-E; W-C; C-E

# middorsals (MDN) 54.73 (52–57) 55.16 (52–59) 56.7 (52–61) **; NS; ****

# midventrals (MVN) 36.93 (34–40) 41.72 (36–48) 40.93 (36–46) ****; ****; NS

# longitudinal scale rows (LSN) 33.27 (32–36) 32.5 (31–34) 31.68 (30–34) ***; NS; ****

# subdigital lamellae under 4th toe (SDLN) 18.2 (16–20) 16.41 (15–20) 16.1 (14–19) ****; ****; NS

Normalized width of tail at tail base (HTc) 0.070 (0.050–0.097) 0.090 (0.042–0.130) 0.099 (0.039–0.128) ****; **; NS

Normalized height of tail at tail base (VTc) 0.069 (0.040–0.107) 0.090 (0.035–0.127) 0.098 (0.039–0.127) ***; **; NS

Normalized head length (HLc) 0.183 (0.152–0.224) 0.171 (0.147–0.212) 0.162 (0.128–0.210) **; NS; *

Normalized head width (HBc) 0.729 (0.647–0.824) 0.749 (0.604–0.924) 0.767 (0.667–0.948) *; NS; NS

Normalized length of hind leg (LHc) 0.355 (0.328–0.381) 0.348 (0.285–0.403) 0.334 (0.287–0.388) **; NS; *

Normalized length of front leg (LFc) 0.229 (0.199–0.270) 0.232 (0.184–0.281) 0.220 (0.166–0.265) NS; NS; *

Normalized length of tibia (LTc) 0.125 (0.116–0.137) 0.115 (0.096–0.129) 0.111 (0.097–0.131) ****; ****; **

Normalized length of forearm (LAc) 0.091 (0.082–0.105) 0.085 (0.074–0.098) 0.081 (0.069–0.101) ***; **; *

Normalized inter-nare distance (INAc) 0.170 (0.117–0.214) 0.179 (0.127–0.229) 0.190 (0.152–0.235) *; NS; *
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The second category, mean differences between groups
with latitudinal clines within the central (eastern Mediter-
ranean) group, suggests that some traits are affected by se-
lection gradients in addition to lineage-specific trait states.
One such trait is relative head length. Lizards in the west-
ern group have on average longer heads relative to their
body length than the eastern group, with no evidence of
clinal variation in either group. By contrast, relative head
length in the geographically intermediate central group
decreases gradually from the western (northern African)
to eastern (Turkish/Iranian) trait states: the farther north
specimens were collected along the eastern Mediterranean
coast, the shorter their heads are relative to body length.
The large extension (roughly 1000 km) of this cline sug-
gests that the central group is likely not a hybridization
zone of the western and eastern group, but rather a dis-
tinct population affected by gradual environmental
change. Remarkably, we found little evidence that similar
clines exist in the western or eastern group, pointing to
unique environmental changes at the transition from
northern Africa to Anatolia [45, 46].
Taken together, our morphological analysis reveals that

morphological variation in Heremites vittatus has a clear
geographical organization, and is likely both affected by
lineage-specific trait conservation and local trait adaptation.

Conclusions
Many species in the Middle East and northern Africa ex-
hibit predominantly longitudinal distributions, and are
potentially characterized by longitudinal patterns of bio-
logical diversity, but the underlying biogeographic mech-
anisms and evolutionary timescales remain largely
unclear. In this paper, we provide the first comprehen-
sive assessment of the mitochondrial phylogeography
and multivariate morphological variation of the striped
skink, Heremites vittatus, a species with a predominantly
longitudinal distribution across the Middle East and
northern Africa. We suggest that H. vittatus evolved as a
separate species in southwest Asia in the late Miocene.
We show that the species diverged into three main mito-
chondrial lineages roughly 2.5–3.6 mya in the eastern,
central, and western regions of the distribution range,
introducing a longitudinal organization of genetic diver-
sity. This divergence was likely driven by a combination
of geological changes in Anatolia and climatic changes
in northern Africa. The morphological variation reflects
this pattern of mitochondrial divergence: the majority of
morphological traits show significant differences be-
tween these regions, supporting the idea of independ-
ently evolving lineages. We also find that subsequent
local radiation in the Pleistocene, likely driven by cli-
matic oscillations and locally emerging geographical bar-
riers, led to the mitochondrial diversity observed today.
Morphologically, clinal variation along the eastern

Mediterranean coast in a subset of traits suggests that
ongoing selection pressures and local adaptation may
play an important role in shaping populations at the
transition from northern Africa to Anatolia. Our find-
ings of allopatric, morphologically and genetically diver-
gent lineages raise the possibility that Heremites vittatus
represents a complex with several undescribed taxa.
However, taxonomic decisions should be based on nu-
clear, mitochondrial, and morphological data collected in
the context of future studies on the inter- and intraspe-
cific systematics and taxonomy of Heremites. In conclu-
sion, our study suggests that longitudinal patterns and
species distributions in the Middle East and northern
Africa may be the result of complex evolutionary pro-
cesses, driven by the region’s geological and climatic his-
tory, geographical setup, and the presence of the Sahara.

Methods
DNA sequence analysis
The DNA sampling consists of 46 H. vittatus specimens
(Additional file 3), including one sequence from GenBank,
covering most of the distribution range (Fig. 1a). We also
sequenced five H. auratus specimens. We included Trachy-
lepis quinquetaeniata from the African lineage of Mabuya
s.l. as an outgroup, because this lineage is one of the closest
relatives of Middle Eastern Heremites [23, 63–65]. We did
not include in the analyses sequences of H. vittatus from
GenBank that only partially overlap the alignment gener-
ated in this study (but see Additional file 2).
Small pieces of tissue were sampled either from mu-

seum specimens (toe or tongue) of various ages and
storage conditions, or were provided by colleagues based
on field collections (part of tail or liver). Samples were
stored in 70% ethanol or EDTA buffer, and genomic
DNA was extracted with standard protocols [66]. A por-
tion of the mitochondrial cytochrome b gene was ampli-
fied by polymerase chain reaction (PCR) with the
primers mt-c-emys (5′-CCG GAT CAA ACA AYC CAA
CAG G-3′) [67] and mt-fs-h (5′-CCA GTA GAA CAC
CCA TTC ATC ATC ATT GGC CAA CTA-3′) [68].
This resulted in an amplicon with a length of 394 bp,
corresponding to positions 14,762–15,155 in the mito-
chondrial genome of Eumeces egregius (positions 633–
1026 in the cytochrome b gene of E. egregius) [69].
DNA sequences were aligned with the ClustalW algo-

rithm implemented in BioEdit [70], and SNPs were veri-
fied by checking the sequence chromatograms. No
insertions or deletions were found in the alignment. We
deposited new sequences in GenBank under accession
numbers MF101923-MF101972 (see Additional file 3).
We used MEGA5.2.2 [71] to determine nucleotide diver-
sity and to calculate uncorrected p-distances based on
pairwise deletion of ambiguous sites, and DnaSP [72] to
identify haplotypes and determine haplotype diversity.
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We then divided the dataset by codon position, and ran
PartitionFinder 1.1.1 [73] to find the best partition scheme
and associated substitution models. The best partition
scheme included the three codon positions each as a sep-
arate partition (lnL = −1930.14357, BIC = 4553.24905498),
with the following models: K80 + G (position 1), HKY + I
(position 2), TrN + G (position 3).
We used BEAST v1.8.1 and associated software tools

[74] to obtain time-calibrated estimates of phylogenetic
divergence. We used the partitioned dataset, and set the
substitution models available in BEAUTi equivalent to
the PartitionFinder model selection for the partitions
separately (partition 1: HKY with gamma site heterogen-
eity; partition 2: HKY with invariant site heterogeneity;
partition 3: TN93 with gamma site heterogeneity). In
accordance with previous recommendations [75], we
used an uncorrelated lognormal relaxed clock model
with a constant coalescent tree prior and a random start-
ing tree for all three partitions. Since dated fossils are
not available for any Heremites species or related genera
(Trachylepis, Chioninia, Eutropis, Mabuya sensu stricto),
we instead generated time-calibrated divergence times
through estimates of the substitution rate. Substitution
rates for cytochrome b in other skinks (Eumeces,
Chalcides, Scincus), geckos (Hemidactylus), and lacertid
lizards (Lacertini) range from 1.15–1.35% per million
years [64, 76–78]. We used a normally distributed prior
of the substitution rate (ucld) with an initial mean of
1.25% and a standard deviation of 0.5% for all partitions
in BEAUTi, and then optimized these values by checking
for convergence and high ESS scores in Tracer v1.6. We
then ran five separate rounds of each 107 MCMC itera-
tions and logged parameters every 1000 steps, which
generated 50,000 trees. We combined these runs in
LogCombiner v1.8.1 with a burn-in of 10% of each run,
generated a consensus tree with TreeAnnotator v1.8.1,
and produced the final tree with FigTree v1.4.2.
In addition, we calculated a maximum likelihood (ML)

tree with the program RAxML 7.0.4 [79] using the rapid
hill climbing algorithm [80]. The dataset was partitioned
into the three codon positions corresponding to the
PartitionFinder partitioning strategy, and run under the
suggested [79] GTR + G substitution model in RAxML.
Sequence evolution within a species does not necessar-

ily follow dichotomous patterns, because co-existence of
ancestral and derived haplotypes may introduce reticu-
late patterns of evolutionary relationships. To account
for this phenomenon, we computed a haplotype network
with the software NETWORK v4.611 [81] (http://
www.fluxus-engineering.com), using the median-joining
(MJ) algorithm with default settings (epsilon = 0). We
assigned haplotypes to major haplogroups (MHGs) with
the Bayesian implementation of the Poisson tree pro-
cesses (PTP) model [82], a method to delimit putative

species on a phylogenetic tree, using the BEAST tree
(Fig. 4) and the PTP default settings (100,000 MCMC
generations, thinning 100, burn-in 0.1, seed 123).

Morphological analysis
We examined 146 H. vittatus specimens from across the
distribution range of the species (Additional file 4, Fig. 1b).
Specimens were only included in the dataset if the collec-
tion locality could be reliably geo-referenced. We did not
distinguish among sexes of the examined specimens. For
bilateral traits, the left character state was recorded. We
measured 60 traits and excluded traits that showed
no or only sporadic variation, leaving two binary,
eleven meristic and 14 mensural traits for further
analyses (Additional file 4). All mensural characters, ex-
cept for snout-vent length, were first normalized for size
by dividing through the snout-vent length (TL, HT, VT,
ALL, HL, TH, LH, LF, LT, LA) or the head length (SL, HB,
INA), respectively. Data were then ln(x + 1)-transformed.
We first conducted a non-metric multidimensional scaling
analysis (NMS), which is a statistical approach to reduce
the dimensionality of the data set by estimating the simi-
larity of every pairwise comparison of samples based on a
similarity coefficient. We used the Gower index (= range-
normalized Manhattan index) for meristic and mensural
traits, and the Jaccard index for binary characters as
defaulted in the program PAST [83]. We retrieved the first
three NMS axes and performed a multivariate multiple re-
gression to test for the effect of geographical location on
the 3D position in morphospace. We summarized the re-
sults with a type 2 MANOVA using Pillai’s test to obtain
separate η2 point estimates for the effect of latitude and
longitude, and conducted a Bootstrap analysis with 105 re-
peats to obtain 95% confidence intervals for the η2 point
estimates. We restricted subsequent analyses to five meris-
tic and 14 mensural traits that showed substantial vari-
ation, and assigned specimens to three geographical
groups (western, central, eastern). We conducted pairwise
multiple comparison tests for significant mean differences
between these groups using Dunnett’s modified Tukey-
Kramer test for uneven sample sizes and heterogeneous
variance as implemented in the “DTK” R package. We also
regressed individual traits separately for each group
against the longitude (western and eastern groups) and
latitude (central group). All statistical analyses were done
in R software v3.2.4 [84].

Additional files

Additional file 1: PTP tree used to delimit major haplogroups. Values
on nodes are Bayesian support (BS) values. Higher BS values indicate that
descendants from this node are more likely to be from one species.
Nodes and their descendant branches that were assigned to the same
species by PTP are red; singleton species are left in blue. (PDF 248 kb)

Baier et al. BMC Evolutionary Biology  (2017) 17:132 Page 13 of 16

http://www.fluxus-engineering.com
http://www.fluxus-engineering.com
dx.doi.org/10.1186/s12862-017-0969-0


Additional file 2: Maximum Likelihood (ML) tree based on combined
sequences of this study and cytochrome b sequences of Heremites vittatus
from Turkey (in green, retrieved from GenBank [44]) that partially overlap
(positions 1-187) with the cytochrome b alignment (394bp) presented
here. The tree was calculated with RAxML 7.0.4 using the climbing hill
algorithm. The dataset was partitioned into the three codon positions,
and run with a GTR+G substitution model in RAxML. (PDF 127 kb)

Additional file 3: Samples included in the phylogeographic analysis.
FMNH = Field Museum of Natural History, Chicago, USA; HUJR = Hebrew
University Jerusalem, Israel; IPMB = Tissue sample collection, Institute for
Pharmacy and Molecular Biotechnology, University of Heidelberg,
Germany; NHMC = Natural History Museum of Crete, University of Crete,
Heraklion, Greece; NMW = Natural History Museum Vienna, Austria;
ZFMK = Zoological Research Museum A. Koenig, Bonn, Germany;
ZSM = Zoological State Collection, Munich, Germany. (XLSX 15 kb)

Additional file 4: Voucher specimens and raw data included in the
morphological analysis. Country codes: CYP = Cyprus, DZA = Algeria,
EGY = Egypt, IRN = Iran, ISR = Israel, JOR = Jordan, LBN = Lebanon,
LBY = Libya, SYR = Syria, TUN = Tunisia, TUR = Turkey. Group codes:
W = Western, C = Central, E = Eastern. Morphological trait abbreviations,
definitions, and data types: PF (prefrontals in contact, binary), P (parietals in
contact, binary), NRN (# scales per row of nuchals, meristic), ILN (# infralabials,
meristic), ISC (# infralabials in contact with subocular, meristic), SCN (#
supraciliaries, meristic), ICF (which infralabial does the first chin scale reach?
meristic), ICS (which infralabial does the second chin scale reach? meristic),
MDN (# middorsals, from the nuchals to the middle of the hind leg base,
meristic), MVN (# midventrals, from the axilla to the hind leg base, meristic),
LSN (# longitudinal scale rows around midbody, meristic), SDLN (# subdigital
lamellae, meristic), FL (# lamellae under fourth finger, meristic), SVL (snout-vent
length, mensural), TL (tail length, mensural), HT (width of tail at tail base,
mensural), VT (height of tail at tail base, mensural), ALL (distance from axilla to
anterior base of hind legs, mensural), HL (head length, from tip of snout to
anterior end of ear, mensural), SL (snout length, tip of snout to anterior end of
eye, mensural), HB (head width, at greatest width of head, mensural), TH
(thoracic height, at shoulder, mensural), LH (length of hind leg, mensural), LF
(length of front leg, mensural), LT (length of tibia, mensural), LA (length of
forearm, mensural), INA (inter-nare distance, mensural). Abbreviations of
museum collections are the same as in Additional file 3, in addition to:
SMF = Senckenberg Museum Frankfurt, Germany; MHNG = Natural History
Museum of Geneva, Switzerland; MTD = Senckenberg Museum of Zoology,
Dresden, Germany. (XLSX 41 kb)
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