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Abstract

Background: The Philippine archipelago is globally one of the most important model island systems for studying
evolutionary processes. However, most plant species on this archipelago have not yet been studied in sufficient
detail. The main aim of this study is to unravel the evolutionary history and biogeographic relationships of the
Philippine members of the pantropical genus Ixora.

Results: The complex plastid and nuclear divergence patterns in Philippine Ixora, documented using tree and
network approaches, reveal a highly dynamic evolution in Ixora, involving several phases of radiation and
recolonization. Philippine Ixora comprises at least five lineages, of which one is most closely related to species from
Wallacea, and the remaining four to species from Asia.

Conclusions: Our study highlights the importance of Philippine species for understanding phytogeographic patterns
in the Indomalayan-Australasian eco-region. The overall genetic differentiation, as well as the incongruence between
genealogies based on the biparentally inherited nucleome and the maternally inherited plastome in Ixora, reflect the
complex tectonic history of the Philippine archipelago. The Ixora lineage related to Wallacean species supports the
delimitation of different ecozones along Huxley’s line, because it is absent from Palawan. The remaining four lineages
are all allied with Asian taxa, reflecting several waves of colonization. Close relationships between some widespread
Philippine species and locally adapted narrow endemics suggest that the widespread, genetically diverse species act as
pools for the formation of new species in a process of ongoing speciation. Our results suggest that the species
concepts of some of the more widespread taxa need to be revised.

Keywords: Huxley’s line, incongruent genealogies, island biogeography, Ixora, molecular systematics, incomplete
lineage sorting, Philippines, phylogeny, Rubiaceae, Wallace’s line

Background
The importance of the Philippine archipelago for
Southeast Asian biogeography was first recognized by
Alfred Russel Wallace when he distinguished the
Australian and Indian regions [1, 2]. He placed the
Philippines in the Indian region, but considered them
“in some respects of doubtful location”. Later, he moved
the Philippines into the Oriental region [3].
With almost 6000 endemic plant and more than 500

endemic vertebrate species, the Philippines constitutes

one of the 25 biodiversity hotspots for conservation pri-
ority and is among the leading ten hotspots regarding
the number of endemics [4]. However, the complex
geological history of the more than 7000 islands
stretching over nearly 2000 km in North-South direc-
tion has made it difficult to understand the diversifica-
tion of the rich plant and animal biodiversity in the
country [5]. Nevertheless, biogeographers, population
geneticists, conservation biologists, and phylogeneti-
cists have been intrigued by the archipelago and its di-
verse endemic species, and have used it as a model
system for addressing a variety of conceptual questions
relating to evolutionary history. Consequently, the
Philippine archipelago has become one of the globally
important model island archipelagos for studying evo-
lutionary processes of diversification [6]. Studies
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utilizing robust and well-sampled phylogenetic analyses
as a basis for understanding the complex biogeograph-
ical histories of Philippine plants and animals have ad-
vanced in the last two decades; however, most of them
are dedicated to animals [7–10]. Biogeographical stud-
ies including Philippine plants were conducted only for
a few genera such as Cyrtandra J.R.Forst. & G.Forst.
(Gesneriaceae [11]), Rhododendron L. (Ericaceae [12]),
Begonia L. (Begoniaceae [13, 14]), and Aglaia Lour.
(Meliaceae [15]).
In the Philippines, Rubiaceae is the most diverse fam-

ily, and 443 (83%) of the 535 species found in the coun-
try are endemics [16]. Species diversity, phylogenetic
and biogeographical relationships of Philippine
Rubiaceae have received renewed interest in recent
years. Greeniopsis Merr. (Ixoroideae: Aleisanthieae) has
been identified as an endemic Philippine genus with its
closest relatives (Aleisanthia Ridl. and Aleisanthiopsis
Tange) in Southeast Asia [17]. Likewise, the endemic
Philippine genus Antherostele Bremek. (Rubioideae:
Urophylleae) is most closely related to a set of
Southeast Asian genera (Maschalocorymbus Bremek.,
Pleiocarpidia K.Schum., Praravinia Korth., Pravinaria
Bremek., Urophyllum Jack ex Wall. [18]). In contrast,
the endemic Philippine genus Villaria Rolfe (Ixoroi-
deae: Octotropideae) forms a well-supported clade with
the Southeast Asian genus Hypobathrum Blume and
the West African genus Pouchetia A.Rich. [19].
None of these endemic genera comprise more than six

species, and little is known about species diversity,
phylogenetic and biogeographical relationships of the
Philippine representatives of other, larger Rubiaceae gen-
era. The pantropical genus Ixora L. (Ixoreae [20]) is the
third largest genus in the family Rubiaceae, with ap-
proximately 530 species [16], most of them shrubs or
small trees in the understorey of tropical forests. Ap-
proximately 280, (possibly up to 300) species occur in
tropical Asia [21], with 44 species in India [22], 38 in
Thailand [23] and 66 species on Borneo alone [24]. In
contrast, only 37 species are known from continental Af-
rica, about 40 species from Madagascar and 35 species
from tropical America [21, 25]. Ixora is one of the
largest Rubiaceae genera on the Philippines, and one of
the best recognizable: Morphologically, it is character-
ized by a combination of articulate petioles, terminal tri-
chotomously branching inflorescences, narrowly tubular
4-merous flowers, contorted aestivation, a single ovule
per locule, and drupaceous fruits and seeds with a large
adaxial excavation [21]. However, identification at spe-
cies level is much more difficult [21]. While several taxo-
nomic treatments of Ixora are available for specific
geographical regions such as Africa [21], Madagascar
[25], the Marquesas Islands [26], and Australia [27], a
revision of the continental Asian taxa is lacking.

Therefore, species delimitation is not yet fully understood,
and the actual number of species is still unknown [28].
Previous phylogenetic studies have clarified the tribal

placement and circumscription of the genus [20, 29–31].
Mouly et al. [31] resolved Ixora species into two large
lineages, an Asian-Pacific lineage (43 species covered)
and an Afro-Neotropical lineage (34 species covered).
Tosh et al. [32] recently investigated the evolutionary
history of Afro-Madagascan Ixora and recovered two
separate lineages of Madagascan taxa. They [32] esti-
mated an Ixoreae crown age of 17 million years ago
(Ma) and dated the onset of divergence between the
Asian-Pacific clade and the remainder of the genus as
15 Ma, indicating a mid-Miocene origin (cf. [33]) for the
lineages, in agreement with the results of Mouly [28].
No samples from the Philippines have been included in
any study so far.
In the Philippines, the genus Ixora provides an exem-

plary case, with a particularly high number of endemic
species known from the country (30 out of 41 species
[34, 35]). The only available prior account was an enu-
meration by Merrill [36], more than 85 years old and
outdated (e.g. [20, 37–39]). Preliminary investigation of
type material and available herbarium specimens showed
that species of Ixora in the Philippines are distinguished
based on subtle differences of the inflorescences and
morphoclines rather than discrete characters, e.g. length
ratio of the corolla tube vs. corolla lobe, and the pubes-
cence of the inflorescence [35]. This corresponds to De
Block’s [21] observations regarding their African
congeners.
In this study, we include for the first time a wide range

of Philippine Ixora species in a phylogenetic analysis
using sequence data from two chloroplast regions, the
rps16 intron and the trnT-F region including the trnT-
trnL and trnL-trnF intergenic spacers and the trnL in-
tron, and the 5′ external transcribed spacer (ETS) and
internal transcribed spacers (ITS1, ITS2) of the nuclear-
encoded 35S rDNA cistron. We interpret our results in
the light of the hitherto known patterns of faunal and
floral migrations and evolution in the Philippines. We
address the following questions. (1) Are the Philippine
Ixora species monophyletic? (2) Are phylogenies derived
from chloroplast and nuclear DNA congruent? (3)
Which species or groups of species are the closest rela-
tives of the Philippine Ixora species? (4) Does the phylo-
genetic pattern of Philippine Ixora have wider
implications on the biogeographic history of the
Philippines?

Results
Outgroup sampling and ingroup sequence characteristics
One of the non-coding gene regions used here, the
nuclear-encoded ITS1, cannot be aligned across all
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Ixoroideae, and alignment of the most divergent and
length-polymorphic plastid region, the trnT-trnL inter-
genic spacer, is difficult in some parts. Also, the other
two nuclear spacers, the ITS2 and the ETS, include se-
quence portions that will lead to ambiguous alignments
when incorporating all Ixoroideae data. Nonetheless, we
could infer four guide trees based on the harvested data
(ETS, ITS excluding non-alignable regions, rps16 intron,
entire trnT-F region), which confirmed that our out-
group selection includes the closest relatives of Ixora
with best-possible data coverage on the gene regions
used here (see Additional file 1).
The 151 new sequences generated in this study were

combined with sequences previously generated and used
by Mouly et al. [30, 31] and Tosh et al. [32] resulting in
a total of 264 sequences of 78 Ixora samples, represent-
ing approximately 60 Ixora species. Levels of genetic
variation between species were generally low for all in-
vestigated regions. The total number of parsimony in-
formative characters (PICs) ranged from 40 in rps16 to
122 in ETS for the ingroup; the number of distinct align-
ment patterns (DAPs) ranged from 209 in rps16 to 450
in trnT-F. In the concatenated cpDNA dataset, 265 char-
acters (10%) were variable, with 360 characters (32.4%)
variable in the nuclear dataset. The characteristics of the
individual chloroplast and nuclear regions are listed in
Table 1.

Incongruence and congruence between nuclear and
plastid genealogies
Phylogenetic analyses of individual gene regions generate
largely unresolved and poorly supported phylogenetic
trees (data not shown). Concatenation of the nuclear
data and the plastid gene regions respectively leads to
better resolved phylogenetic trees (Fig. 1) and limits the
number of scenarios of potential phylogenetic relation-
ships between species and clades (Figs. 2 and 3).
Two large, mutually monophyletic lineages, an

Asian-Pacific clade (I) and an Asian-Afro-Neotropical
clade (clades II–IV), are inferred based on the nuclear
dataset (Figs. 1a and 2). Based on the plastid data,

three main clades emerge: a Philippine clade (A), a
mixed Asian-Pacific clade (B), and a clade including
the African and New World species (clade C; Figs. 1b
and 3). The nuclear tree suggests a split between the
Indian-Mascarene species and the remainder of the
African-New World clade. A nuclear clade III corre-
sponds to the plastid clade C. This is the best-
supported (via bootstrapping, BS) and most probable
(regarding Bayesian inferred posterior probabilities,
PP) clade (Figs. 1 and 2). In both phylogenies, the
American taxa I. aluminicola and I. ferrea are nested
in the African subtree(s). Taking the nuclear and plas-
tid inferences together, four or five main lineages can
be defined based on the exclusive combination of nu-
clear and plastid signatures: Ia/A (red in Figs. 1, 2
and 3), Ib/B1 (orange), II+IV/B (green and purple),
and III/C (blue). The nuclear clade Ia corresponds
exactly to the plastid clade A. Based on nuclear data,
this clade (Ia) is sister to a clade of Asian-Pacific spe-
cies (Ib) with B-type plastids (clade B1 in Fig. 1).
Based on plastid data, this clade (A) is sister to the
remaining taxa, reflecting a deep incongruence. Al-
though different in their nuclear signatures, the mem-
bers of the nuclear clades II and IV share the same
plastid. Consistently, the plastid haplotypes of mem-
bers of clade II appear to be generally more derived
(to different extents) and include unique ribo−/haplo-
type combinations (II/B2 and II/B3; see below) as
reflected by their placement in the plastid tree and
the support of critical branches (Figs. 1, 2 and 3).
Both the nuclear and chloroplast maximum likelihood

(ML) trees (Fig. 1a and b; see Additional file 2 for the
corresponding trees including cultivars) placed the 35
samples (24 species) of Philippine Ixora in five distinct
subtrees. The positions and support of the five corre-
sponding clades, however, differ between the two data-
sets. Lineage Ia/A is exclusively Philippine. The
remaining four clades comprising Philippine species
mixed with Southeast Asian species are part of lineage(s)
II+IV/B. The structure of the nuclear clade II reflects
two radiations with Philippine species. While the

Table 1 Information for phylogenetic analyses (rps16, trnT-F, ITS and ETS, ingroup only)

rps16 trnT-F ITS ETS

No. of sequences investigated 74 75 73 65

No. of new sequences 39 40 40 32

Range of sequence length (bp) 593–876 767–1744 552–791 282–436

Length of aligned matrices (bp) 847 1798 676 436

Proportion of gaps and undetermined characters 14.4% 16.3% 6.3% 5.5%

Number of variable characters 96 (11.3%) 169 (9.4%) 175 (25.9%) 185 42.4%)

Number of PIC 40 (4.7%) 70 (3.9%) 106 (15.7%) 122 (28.0%)

Number of DAP 209 450 248 260

Abbreviations: DAP distinct alignment patterns, PIC parsimony-informative characters
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exclusively Philippine subclade IIa matches exactly the
chloroplast clade B3, composition and arrangement of
the I. palawanensis subclade (clade B2) differs between
the two datasets. Using the nuclear data the Malayan I.
iteophylla is included in this clade but I. otophora and
I. sp. nov. 2 “Palawan” are excluded. A similar situation
is found in nuclear clade IV; one subclade (IVa) is ex-
clusively Philippine, while the other (subclade IVb) is
comprised of both Philippine and several Southeast
Asian species. In the chloroplast tree, these two radia-
tions do not correspond, and the involved species are
largely unresolved.
Multiple accessions of the same species are placed in

the same subclades (I. palawanensis, I. salicifolia, I.
macgregorii, I. cumingiana); but only I. bartlingii and I.
macrophylla are resolved as actual sisters, irrespective
of the data used (nuclear or plastid). The highest vari-
ability is encountered in the five accessions of I.

philippinensis which fall into two groups with (to some
extent) different plastid and nuclear signatures.

Signal ambiguity in nuclear and plastid data sets
Detailed inspection of split patterns in the bootstrap
samples (Figs. 2 and 3; datasets excluding cultivars)
demonstrate that the nuclear types are generally more
distinct than the plastid types of the same specimens;
this is illustrated in the more tree-like general structure
of the nuclear-based bootstrap network. Signal ambigu-
ity in the nuclear data relates to the initial radiation
within the core group Ixora and the initial diversification
of clade III. The plastid signal is not sufficiently clear ei-
ther to resolve several backbone relationships. Most im-
portantly, the signal from many Philippine taxa of clade
B commonly is ambiguous. Other taxa (or pairs of taxa)
inflicting topological ambiguity at deeper nodes in the

Fig. 1 Tanglegram showing maximum likelihood trees based on the nuclear (left) and the plastid (right) datasets, after exclusion of the cultivated
species. Branch numbers indicate bootstrap support values and posterior probabilities for the main lineages. Major clades are labelled with roman
numbers for nuclear data, and uppercase letters for the plastid data (subclades use lowercase letters and Arabic numbers). Colours highlight main
lineages characterized by coherent combinations of nuclear and plastid genotypes: red, lineage endemic to the Philippines (with nucleome type I
and plastome type A); orange, putative South Asian-Australasian sister lineage of the red lineage (I/B); purple, Southeast Asian lineage with
Philippine members (II/B), blue, African-New World lineage (III/C); green, East Asian lineage with members on Palawan and in the Philippines
(IV/B). Same colouring scheme is used in subsequent figures and tables
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Ixora core group plastome are I. diversifolia, I. javanica,
I. acuticauda, I. kinabaluensis, and I. valetoniana.
Individual taxa of unclear affinity are: 1) I. nigricans

from India, with somewhat inconclusive nuclear signals
but an African-American -type chloroplast; 2) I.
brunonis from Thailand with Southeast Asian nuclear
signals but an African-American type chloroplast; and 3)
I. acuticauda from Borneo with incongruent Asian
nuclear and chloroplast types.
Further topological ambiguity arises from to the

cultivated taxa which occupy markedly different posi-
tions in the nuclear- and plastid-based inferences
(Additional file 2). The cultivars Ixora finlaysoniana, I.
pavetta, I. casei, and I. chinensis are nested in the Asian
(including Philippines) nuclear-based clade IV; but their
plastid affinity lies with the New-World African clade C.

Similarly, I. brunonis from Thailand is the poorly sup-
ported sister of I. casei and I. chinensis in the nuclear
tree (all members of clade IV), while it is the well-
supported sister of I. finlaysoniana in the cpDNA tree
(subclade of clade C). The accession of I. finlaysoniana
cultivated in the Philippines always formed a strongly
supported clade with an accession cultivated in
Tanzania. The last cultivar, Ixora coccinea, retains its as-
sociation with a second clade of Asian (including
Philippine) species in both trees (clades II, clade B), but
changes position inside this clade.

Biogeographic patterns in Ixora with special reference to
Philippine taxa
In the Philippines, distantly related nuclear lineages
occur sympatrically (Fig. 4a, stars), indicating that

Fig. 2 Bootstrap support network, nuclear data. Ambiguous signal in the nuclear data (excluding cultivars) visualized using bipartition (bootstrap
support) networks [80, 82], a special from of consensus networks in which the edge lengths are proportional to the frequency of the corresponding
phylogenetic split in the bootstrap (BS) replicate sample The bootstrap support network is based on 400 BS replicate trees inferred from the nuclear
data.. Members of major lineages (see Fig. 1) coloured accordingly, outgroups in black. Circles, non-Philippine individuals; 7-pointed stars, Palawan
samples; 5-pointed stars, other Philippine samples. (Corresponding posterior probability networks can be found in Additional file 2)
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natural populations of the main lineages are genetically
isolated. Plastids in Ixora are geographically sorted. With a
few exceptions, each nuclear lineage (Ia, Ib, II, III, and IV)
carries one sort of plastid haplotype (A, B or C) (Figs. 4
and 5). The outgroup-inferred root suggests an initial split
in Ixora between a lineage that today occurs from the
Pacific Islands to the Philippines (except for Palawan) with
an outlier in Sri Lanka (yellow in Fig. 4a), and the rest of
the genus (light blue). Plastid variation indicates substan-
tial genetic drift between African (lineage III/C; blue signa-
tures in Fig. 4b) and South Asian-Indomalayan members
(green and purple signatures in Fig. 4b) of the genus in
general, and the two Pacific-Philippine potential sister lin-
eages Ia/A and Ib/B1 (red and orange signatures, respect-
ively). Plastid signatures indicate that the now mostly
Pacific lineage Ib/B1 (orange) and the South Asian-
Indomalayan group (lineage[s] II + IV/B; green, purple)
within Ixora evolved within or near to the same

geographically restricted area(s) (grey plastid clade,
Fig. 4b). At the time of this divergence, both the
African (blue) and the exclusively Philippine (red)
Ixora were geographically isolated from the main bulk
of South Asian-Indomalayan Ixora (Fig. 4b).

Discussion
Relationships of the Philippine Ixora species
Well-supported incongruence between the nuclear and
the plastid datasets prevents the analysis of a combined
dataset ([40, 41], and references therein). Therefore, the
two different genealogies were explored separately.
Our main nuclear clades, the Asian-Pacific clade (I)

and the Asian-Afro-Neotropical clade (II–IV), corres-
pond to those of Mouly et al. [31], who also found an
Afro-Neotropical and a Pacific clade. However, while
Mouly et al. [31] inferred a poorly supported monophy-
letic Asian clade, our greatly increased sampling of

Fig. 3 Bootstrap support network, plastid data. Ambiguous signal in the plastid data (excluding cultivars) visualized using bipartition (bootstrap support)
networks, a special from of consensus networks in which the edge lengths are proportional to the frequency of the corresponding phylogenetic split in
the bootstrap (BS) replicate sample. The bootstrap support (bipartition) network is based on 700 BS replicate trees inferred from the plastid data.
Members of major lineages (see Fig. 1) coloured accordingly, outgroups in black. Circles, non-Philippine individuals; 7-pointed stars, Palawan samples;
5-pointed stars, other Philippine samples. (Corresponding posterior probability networks can be found in Additional file 2)
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Asian, and in particular Philippine taxa, shows that
Asian (including Philippine) species occur in both major
clades in Ixora.
The species from the Philippines are represented in

five different lineages, corresponding to three major ribo
−/haplotypes in the nuclear and the chloroplast dataset.
Two of these ribo−/haplotypes are shared with mainland
Southeast Asian species, while the third one is a rather
distant relative (putative sister lineage) of an Asian-
Pacific lineage. Thus, the phytogeographical relation-
ships of the Ixora species found in the Philippines are
fully decoupled.
Lineage Ia/A comprises a strongly supported, genetic-

ally isolated group of endemic Philippine Ixora species
that possibly share a common, potentially widespread
(see plastid signatures) ancestor with a lineage (Ib/B1)
composed of species from the wider Pacific area, which
also includes I. calycina from Sri Lanka and southern
India. Ixora angustilimba and I. bibracteata are strongly
supported sister species, both characterized by solitary

(Fig. 6b) or at the most, three, flowers in an inflores-
cence supported by bracts [42, 43]. Sister to these two
species are two recently described species, I. reynaldoi
and I. silagoensis [44, 45]. Both species are characterized
by subsessile leaves, sessile or shortly pedunculate, erect
and lax inflorescences (Fig. 6c). Nested in this group are
the two samples of I. bartlingii characterized by long-
pedunculate, pendulous inflorescences bearing numer-
ous flowers (Fig. 6a). The sister clade to this group
contains I. luzonensis and I. sp. indet. 3 “Batanes”, which
differ from their relatives by their shortly pedunculate
and lax inflorescences.
The nuclear clade II, one of the two lineages with ex-

clusively B-type plastids, contains two well-supported
subclades, one of them exclusively consisting of
Philippine (without Palawan) species (subclade IIa) with
derived plastids (plastid clade B3; Figs. 1, 3 and 5). The
‘plesiomorphic’ plastids found in other members of the
same lineage including all samples from Palawan, cause
the ambiguous, but weak signals along the proximal part

Fig. 4 Overview map including all analysed samples. Geographic distribution of nuclear-inferred (a) and plastid-inferred (b) lineages within sampled
Ixora. Phylogenetic relationships of distinguished nuclear and plastid lineages are depicted as schematic cladograms, root as defined by outgroups
(branches with non-high support collapsed to polytomies). Members of major lineages (see Fig. 1) coloured accordingly, grey: not genotyped individuals.
Circles, non-Philippine individuals; 7-pointed stars, Palawan samples; 5-pointed stars, other Philippine samples
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of the B-type subtree, characterizing, to various de-
grees, all members of clades II and IV (Figs. 1 and 3).
The Palawan clade B2 (subclade of clade II in the
nuclear tree) comprises I. palawanensis and I. leuco-
carpa (Figs. 1, 2 and 3). Ixora sp. nov. 2 “Palawan” is
sister to these species included in clade B2, but out-
side the I. palawanensis–I. leucocarpa subclade in the
nuclear tree, where it is sister to the Malayan I. iteo-
phylla. Though sharing similar habitats, forested
ravines or humid forest, the species of the Palawan
clade differ in their flower colour (I. palawanensis,
salmon-red (Fig. 5j); I. leucocarpa, white; Ixora sp.
nov. 2 “Palawan”, orange).
The three accessions of I. salicifolia are all part of clade

B3 in the plastid tree and of IIa in the nuclear tree, but are
not resolved as discrete clades (Fig. 1). Ixora longifolia and
I. gigantifolia group with I. salicifolia 1 in the nuclear tree,
while I. salicifolia 2 and I. salicifolia 3 remain unresolved.
All species in this group possess derived, similar or identi-
cal, haplotypes of lineage B (Fig. 5, Additional file 3) and

share morphological traits: pedunculate, erect and com-
pact inflorescences and long-pedicellate flowers (Fig. 6k).
Ixora magnifica, another Philippine endemic with showy
bright red flowers, is resolved with high support as sister
to an unidentified accession from Thailand in the nuclear
tree, while sharing the characteristic B3 haplotype.
Within the third Ixora lineage (IV/B) found in the

Philippine archipelago, the differentiation patterns are
less clear. Of the widespread species I. philippinensis,
two samples collected in the northern part of the
Philippines (I. philippinensis 2 and 5 from Ilocos Norte
and Batanes) are sister of the widespread, but monophy-
letic I. macrophylla (Aurora and Cebu) and I. alejandroi
(Palawan), and are separated from the three samples col-
lected in the southern part of the country (Palawan,
Surigao and Davao). In the nuclear tree, the latter are
contained within the sister clade of I. longistipula
(Panay), a species characterized by pendulous inflores-
cences in which the flowers form a simple, dense head
(Fig. 6g). Tosh et al. [32] observed a similar pattern for I.

Fig. 5 Close-up on Philippine archipelago. Geographic distribution of main Ixora lineages (coloured accordingly, see Figs. 1, 2 and 3) on the
Philippines (a) and hypothetical evolutionary pathways of plastid haplotypes as inferred using median networks of individual gene regions. b trnT-trnL
intergenic spacer. c trnLLF region including trnL intron and trnL-trnF intergenic spacer. d rps16 intron. Circles, non-Philippine individuals; 7-pointed stars,
Palawan samples; 5-pointed stars, other Philippine samples
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mangabensis, in which the populations from northern
and southern Madagascar did not form a natural group
and exhibited small morphological differences. In I. phi-
lippinensis, the material collected from the north has
longer peduncles and many flowers per inflorescence
(Fig. 6e) compared to the (sub-)sessile to shortly pedun-
culate inflorescences with at most ten flowers per cyme
in materials collected from the south (Fig. 6f ). Re-
evaluation of the taxonomy of I. philippinensis is

required in view of the genetic differentiation and mor-
phological variation observed between these populations
currently united in this species. The Palawan endemic I.
alejandroi did not group with other species of Palawan
(II/B2; Fig. 1). Ixora alejandroi (Fig. 6i) is characterized
by an elongated cyme with congested secondary axes,
reddish brown corolla and stigmatic lobes shortly cleft
in the middle; characters which are not known from any
other Philippine species [45]. Except for a pubescent

Fig. 6 Examples of species of the five subclades of the Philippine Ixora. a Ixora bartlingii Elmer (Pelser et al., 2011 [92]); b Ixora angustilimba Merr.
(Banag 11-032, USTH); c Ixora silagoensis Manalastas, Banag & Alejandro (Banag 12-037, USTH); d Ixora macrophylla Bartl. ex DC. (Banag 11-053,
USTH); e Ixora philippinensis Merr. (Tandang DT548, PNH); f Ixora philippinensis Merr. (Alejandro 11-102, USTH); g Ixora longistipula Merr.
(Pelser et al., 2011 [92]); h Ixora cumingiana Vid. (Pelser et al., 2011); i Ixora alejandroi Banag & Tandang (Tandang MH1707, PNH); j Ixora
palawanenis Merr. (Medecillo MPM 471, USTH); k Ixora salicifolia DC. (Banag SU002, USTH). — Credits: P. Pelser (A, H); G. Alejandro (B, D, F);
J. Dela Bajan (C); D. Tandang (E, I); R. Bustamante (G); C. Banag (K)
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inflorescence and non-articulate branching of the inflor-
escence axes, I. alejandroi shares no morphological char-
acters with I. macrophylla and I. philippinensis. Its
plastids are plesiomorphic within the IV/B lineage (cf.
Fig. 3, Additional file 3, and median-joining networks in
the online supplementary archive).
Subclade IVb (Fig. 1) comprises the two samples of I.

cumingiana from Luzon, I. myriantha (Davao) and two
sterile accessions attributed to I. macgregorii (Sorsogon).
These species share white flowers and lax inflorescences
(Fig. 6h), which become more compressed towards the
south.
In our study, some species thought to be closely

related based on morphology were placed in different
subtrees (clades). This is the case with I. macrophylla, I.
bartlingii, and I. longistipula, which are often misidenti-
fied in herbarium collections due to their long-
pedunculate, pendulous inflorescences with white
corollas and overlapping shape of the leaves. However,
other morphological characters support their separation
in the phylogenetic tree, particularly the articulate, ter-
minal inflorescences of I. bartlingii and I. longistipula as
opposed to the non-articulate, cauli- or ramiflorous in-
florescences of I. macrophylla (Fig. 6d) as well as the
sessile to capitate flowers of I. longistipula (Fig. 6g) as
opposed to the pedicellate flowers of I. bartlingii and I.
macrophylla (Fig. 6a and d).
It is interesting to note that the most widespread and

variable Philippine species (e.g., I. philippinensis, I. salici-
folia) are found in different groups, associated genetic-
ally with morphologically related species of narrower
distribution. This suggests that these widespread, genet-
ically diverse species might act as pools for the diversifi-
cation of locally adapted new species in a process of
ongoing speciation, as recently shown for I. margaretae
in New Caledonia [46].
While our investigation provides unequivocal evidence

for the polyphyly of the Philippine Ixora, the relation-
ships of several species to related species from the Asian
mainland remain to be studied in more detail, because
the plastid tree (in particular) is not yet well resolved in-
side clade B. Lineage sorting in this complex group ap-
pears yet to be incomplete (Fig. 1). Moreover, our
present results indicate that several species from Asia
display unusual combinations of nuclear and plastid ribo
−/haplotypes (I. acuticauda and I. brunonis from
Thailand, I. nigricans from India; Figs. 1 and 2,
Additional file 3) that could be indicative of recent or
ancient reticulation between major lineages (introgres-
sion, hybridization, as already discussed in Mouly et al.
[31]). However, an enlarged sampling of Malesian and
Indian taxa and an increased number of loci will most
likely refine our results for clade B. Ultimately, the com-
bination of additional, more variable plastid markers and

the nuclear markers used here should be able to discrim-
inate further between reticulation and incomplete
lineage sorting; the latter appears to be a minor issue in
Ixora, but it may account for the pattern seen in
Southeast Asian/Malesian species of lineage(s) II+IV/B.
Reticulation, possibly caused by hybridization [31, 32, 47],
is indicated in particular for the cultivated species in our
nr- and cpDNA trees (Additional file 2) by their conflict-
ing, relatively terminal positions.

Endemism
Twenty-one of the 24 Philippine species included in
this phylogenetic study are endemic to the Philippines.
The three non-endemic species are I. longifolia, I.
philippinensis, and I. salicifolia. While lineages Ia/A
and II/B2 comprise only species endemic to the
Philippines, lineages IVa/B, IVb/B and II/B3 contain
both species endemic to the Philippines and species
also reported from a wider Asian range. In clade IVa,
both I. macrophylla and I. philippinensis are reported
from all major Philippine islands including Palawan,
and I. philippinensis is supposed to also occur in other
areas of Malesia, and as far as Taiwan. However, in our
analysis, the multiple accessions of I. philippinensis
occur in two relatively distinct, well-supported nuclear
subclades (Fig. 1, Additional file 2). This raises the
question whether I. philippinensis represents a single
species. The type specimen of I. philippinensis comes
from Bataan, a peninsula in central Luzon, neither in-
cluded in the area of the northern nor of the southern
samples. Therefore, it is not yet clear whether one of
these two lineages constitutes I. philippinensis in the
sense of the protologue or whether the central
Philippines might be home to a another, the typical,
sublineage. More samples, including material from
outside the Philippines presently included in I. philip-
pinensis, need to be studied with combined morpho-
logical and molecular data to assess species boundaries
within lineage IVa/B.
Lineage II/B3 comprises species centred in Mindanao

and the Visayas, except for I. salicifolia which is widely
distributed in the Philippines and also found in Borneo
and Java. In this case, the present species concept may
still apply, as the interspecies relationships in this sub-
clade are unresolved. All members of lineage II/B3 ap-
parently share a recent common geographic origin (note
the length of the subtree roots in Fig. 1). Should further
studies identify I. salicifolia in Malesia as an emigrant
from the Philippines, it would underpin the key role of
Mindanao as stepping stone for Ixora dispersal in the re-
gion [48]. Our sample identified as I. longifolia comes
from Cebu and thus represents a typical member of the
exclusively Philippine lineage II/B3. In the Philippines,
this species is reported from southern Luzon, the
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Visayas, Mindanao and Palawan [35]. However, the
type of I. longifolia was collected on the island of
Honimoa (Moluccas, Indonesia) [49]. Further reports
come from Borneo, Sumatra, and Amboina [35]. This
may be an example for a species colonizing from the
Philippines. However, because its area includes the
Sunda Shelf (Borneo) and both western and eastern
Wallacea (sensu [50]) and is thus extremely large for
an Ixora species, detailed combined molecular and
morphological analyses are necessary to establish
whether the current concept of this species is valid.

Biogeography
The signal from nuclear and plastid data is far too com-
plex to allow for application of currently available
methods of biogeographic inference. All current
methods need a fully-, or at least well-resolved, ultra-
metric phylogenetic tree as input. Computation of such
trees for the nuclear and plastid data, which would pro-
vide the necessary discriminating topology to obtain
meaningful ancestral area reconstructions, is not feasible
based on the available data. Signal strength is a limiting
factor in the nuclear, and to aneven greater extent, the
plastid, data. Deep incongruences prevent concatenating
both data sets. In addition to primary nuclear-plastid in-
congruence, the genetic complexity in Ixora indicates
phases of secondary reticulation (I. brunonis, possibly I.
acuticauda) and incomplete lineage sorting (situation in
lineages II+IV/B). These two evolutionary phenomena,
not uncommon at the intra-generic level in plants, can-
not be captured by a single phylogenetic tree. Thus, we
used an alternative approach. The plastome is only ma-
ternally inherited and should be stronger geographically
constrained than the nucleome, but less affected by early
(during formation of species/lineages) or late (after for-
mation of species/lineages) reticulation. Therefore, we
assume that species with similar plastid signature come
from the same area of origin. Similarity in the
biparentally-inherited nucleome is taken as indication
that two or more taxa are closely related in an evolu-
tionary sense, and have not been isolated for a long time.
It has been shown that in densely sampled, sympatric
oak species speciation processes directly affect the
nucleome, but not the plastome [51–55]. Two closely re-
lated species are more likely to hybridize and introgress,
which will eventually lead to a homogenization of the
nucleome but not necessarily of the plastome.
Widespread species with species-diagnostic nuclear sig-
natures can carry distinct plastid signatures (e.g. Quercus
coccifera and Q. ilex [54, 56]). Thus, nuclear data will
more likely reflect the (current) systematic affinity of an
individual or species, whereas plastid data may reflect
the provenance of the (mother) population (e.g. [55, 56]
for oaks, and [57, 58] for Nothofagaceae).

The simplest explanation for the geographic distri-
bution of nuclear and plastid lineages (Fig. 4) is that
an originally South Asian-Indomalayan sister lineage
(orange) of the exclusively Philippine lineage (red),
migrated or expanded into the southern Pacific area,
possibly in response to the expansion of earlier di-
verged other Ixora in that region (green and purple
members of the African-Asian clade). Alternatively,
assuming that the root in the plastid tree may be
slightly misinformed (note the central placement of
the purple, B-type, haplotypes in the MJ networks in
Fig. 5), the divergence between the Pacific (orange)
and African-Asian (blue, green) plastids effectively
represents a geographic differentiation already be-
tween a (continental) South/Southeast Asian (green,
purple) and Malesian-Australasian lineage (red and
orange; Figs. 4 and 5). In this context, one should
note the distinctness of the trnT-trnL spacers (Fig. 5),
the most variable plastid marker included here with
an overall divergence hindering alignment across all
Ixoroideae. This is combined with lower divergence in
the rps16 and trnL introns (and trnL-trnF spacer),
plastid intron (and spacer) regions that can be
straightforwardly aligned across all Ixoroideae
(Additional file 1 and files provided in the electronic
supplementary archive). Taken together, this could be
indicative for a widespread common ancestor with a
heterogenous plastome that was already starting to
diversify due to genetic drift.
Under the primary assumptions (nuclear signal = sys-

tematic-phylogenetic affinity; plastid signal = geographic
origin), the distinctness of both the nucleome and plas-
tome of the exclusively Philippine lineage (red) suggests
that this is the genuine (original) Ixora lineage of the
Philippines, or at least a lineage originating and evolving
in a different area to the rest of the genus. Thus, the
modern mosaic of haplotypes found on the Philippines
bears witness of several colonization waves by the
African-Asian Ixora (lineage II+IV/B), highlighted by the
plastid signatures found in that lineage. Only the least
derived haplotypes of this lineage (purple, light green in
Fig. 5) – with respect to the trnL intron and downstream
trnL-trnF spacer [trnLLF region] and rps16 intron and
in comparison to the haplotypes of the Pacific-Philippine
lineages – are found on Palawan. More derived types
(dark green, violet; Fig. 5) are scattered across the archi-
pelago. These haplotypes can also be found outside of
the archipelago (circles in haplotypes networks in Fig. 5),
indicating multiple colonizations.
Our study presents an opportunity to make several in-

ferences about the biogeographical patterns and diversi-
fication of the Philippine Ixora. In the Philippines, four
major colonization routes, or biogeographic umbilici
[59] have been identified as entryways to parts of the
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archipelago that have never been connected to a main-
land. One colonization route includes the eastern island
arc involving Sulu Archipelago-Mindanao-Leyte-Samar-
Luzon which is most likely the route followed by the
species of lineage Ia/A, seeing as their distribution is re-
corded in these areas. Relatively long isolation from the
rest of Ixora and its potential Asian-Pacific siblings, as
well as small population size and areas, would explain its
marked distinctness (strong genetic drift). Interestingly,
lineage Ia/A (orange; Figs. 4 and 5) predominantly oc-
curs in the northern Philippines and comprises species
collected from the provinces of Aurora (I. angustilimba),
Ilocos Norte (I. bibracteata), Zambales (I. luzoniensis),
and Batanes island (Ixora sp. 3). This may reflect the fact
that northern Luzon constitutes one of the geologically
comparatively old parts of the Philippines that has
undergone considerable northwestern movement during
the Neogene [5]. Two species from eastern Visayas, I.
reynaldoi and I. silagoensis, collected in Samar and
Leyte, respectively, as well as the two samples of I. bar-
tlingii are also nested within clade Ia/A. Ixora bartlingii
is a widespread species found in most islands or prov-
inces but never recorded from the island of Palawan.
The four clades containing Philippine species of line-

age(s) II+IV/B are derived from a general Asian group.
Thus, our data suggest (at least) four independent
colonization events between Southeast Asia and the
Philippines for Ixora. This reflects the dispersal mode of
the genus, whose fleshy fruits are dispersed by under-
storey birds with usually limited ranges of action [60].
Palawan is playing a special role in improving our un-

derstanding of Southeast Asian biogeography. While the
famous Wallace’s line [2] separates Wallacea from the
Sunda-Region including the Philippines, Huxley’s line
[61], separates the Philippines (except for Palawan) from
the Sunda-Region, thus linking the island of Palawan
biogeographically to Borneo. Recent analyses by Van
Welzen et al. [50] revealed evidence for partitioning of
Malesia into three instead of two regions: the western
Sunda Shelf minus Java (Malay Peninsula, Sumatra,
Borneo), central Wallacea (Philippines, Sulawesi, Lesser
Sunda Islands, Moluccas, Java), and the eastern Sahul
Shelf (New Guinea). However, Van Welzen et al. [50]
treat Palawan as part of the Philippines, while its plate
tectonic history identifies it as part of Sundaland [5]. In
our study, we have included five of the eleven Ixora spe-
cies occurring in Palawan. For lineage Ia/A, our results
indeed support the separation of the island from the
Philippines along the traditional Huxley’s line, because
the only widespread species included in this clade, I.
bartlingii, was never recorded from Palawan. In lineages
II/B and IV/B, however, representatives from Palawan
are involved in several radiations (Figs. 1 and 5). Never-
theless, the comparison of the corresponding subclades

in the nuclear and plastid trees (Fig. 1), and the in-depth
analysis of the Philippine plastid haplotypes (Fig. 5) con-
verge to a rather simple hypothetical scenario. The
lineage represented by nuclear clade II diversified in
Southeast Asia, with a Malesian sublineage (I. iteophylla)
reaching Palawan, and (re)colonizing from here the
Philippines (subclade with B3 haplotypes; the widespread
I. salicifolia is known from Palawan, but could not be in-
cluded in our study), but also Indonesia (I. otophora).
Bottleneck events while jumping into Palawan and the
rest of the Philippines would explain the incomplete
lineage sorting expressed in the plastid of lineage II/B,
with one (non-Philippine) haplotype shared with mem-
bers of the nuclear clade IV, while the other two are dis-
tinct, but of ambiguous phylogenetic affinity within
clade B. One hypothesis could be that the founder popu-
lations were very small (a few seeds from the same par-
ent population). Once established on Palawan they
prevented further migration of their closest relatives. A
similar situation may be that observed for Hoya on New
Guinea, where the dominant Australasian lineage
blocked the migration of two genetically more derived
lineages except for a single sublineage each [62]. In
contrast, in clade IVa, a clade with relatively underived
B-type plastomes, the widespread species I. philippinen-
sis and I. macrophylla are both reported from the island.
The fact that the Palawan endemic I. alejandroi groups
with the northern accessions of I. philippinensis (2, 5),
and not with the I. philippinensis accession from Pala-
wan in the southern group, indicates that, at least for
this group of species, regular exchange between all
Philippine islands, including Palawan, is still taking
place. In its sister lineage IVb/B, the widespread species
I. cumingiana is present on Palawan as well as on the
other islands. Because our study does not include sam-
ples of these species from Palawan, their migration
routes inside the Philippine archipelago remain to be
investigated.
For the species of lineage(s) II+IV/B, our present re-

sults support the conclusion of Atkins et al. [11] in
Cyrtandra (Gesneriaceae), who found that Palawan has
both strong biogeographical ties with the other
Philippine islands and, via Borneo, with the remainder of
Sundaland. An increased sampling of the species re-
corded from Indonesia, particularly from Borneo, the
most diverse area for the genus [24], will help to disen-
tangle the supposedly multivalent role of Palawan for
the biogeographic history of Ixora.

Conclusions
For Ixora, the Philippines seem to constitute a crossroad
where species from two major lineages in Ixora, the
Pacific and the African-Asian one, have immigrated and
subsequently radiated (Figs. 4 and 5). Our results further
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indicate that no secondary mixing has occurred between
the two main lineages, as both nrDNA and cpDNA ana-
lyses suggest the same species groups. A more detailed
study of lineage(s) II+IV/B, focusing on Asian material,
is needed to understand the complex biogeographical
patterns in Ixora inside the Malesian Region and adja-
cent continental Asia. Future studies should also include
more populations, especially of species with wider distri-
butions – be it on several islands or a presumed distri-
bution on mainland Asia – to more finely resolve the
phytogeography of the Philippine Ixora species.

Methods
Taxon sampling
Fieldwork was conducted in the Philippine islands from
2010 to 2013 in order to collect herbarium, alcohol and
DNA material of Philippine Ixora species. We included
72 Ixora accessions (see Additional file 4), representing
approximately 60 species of which 19 species are from
other Asian countries and 24 species from the
Philippines. Three Philippine specimens are potentially
new species (pending formal description).
Following Mouly [31] and Alejandro et al. [17], three

taxa from the tribes Aleisanthieae (Greeniopsis multi-
flora Merr. and Aleisanthiopsis distantiflora (Merr.)
Tange) and Greeneeae (Greenea corymbosa K.Schum.)
were chosen for the purpose of outgroup-rooting. Selec-
tion of suitable outgroup taxa was confirmed based on a
full gene bank harvest (Additional file 1) for all four
gene regions and guide trees optimized under ML (see
Additional file 1). All other genera covered by data for
all four gene regions are substantially more distant, in
phylogenetic terms, from Ixora (see Figs. S1-1 to S1-5 in
Additional file 1); and fairly difficult to align with Ixora
(particularly in the case of the ITS region).

DNA extraction, amplification, sequencing, and alignment
Total DNA was extracted from dried material preserved
in silica gel [63] following the protocols of DNeasy Plant
Mini Kit (Qiagen, Germany). For the chloroplast regions,
PCR mixes were made up to 25 μl each and contained
1.0 μl MgCl2, 2.5 μl 10 × PCR buffer, 2.0 μl dNTP, 1.0 μl
of 10 μM forward primer, 1.0 μl of 10 μM reverse pri-
mer, 0.35 μl Taq DNA polymerase and 1 μl of total gen-
omic DNA. Amplification of rps16 and trnT-F used the
following PCR settings: initial melting phase of 2 min at
95 °C; followed by 35 cycles of 30 s at 95 °C, 1 min at
50–55 °C, and 2 min at 72 °C; and ended with a final ex-
tension phase of 7 min at 72 °C. The following sequence
fragments were amplified: (1) the 3′ part of the 5′ exter-
nal transcribed spacer of the nuclear-encoded 35S rDNA
(ETS); (2) the complete ITS region comprising the in-
ternal transcribed spacers ITS1 and ITS2, and the 5.8S
rRNA gene of the 35S rDNA; (3) the plastid rps16

intron; (4) the plastid trnT-trnL intergenic spacer
(trnT-L); and (5) the adjacent trnLLF region compris-
ing the trnL intron, the downstream (5′ or 1st) trnL
exon, and trnL-trnF intergenic spacer. For primer pairs
see Additional file 5.
PCR mixes for the nuclear regions were the same as

for the chloroplast regions, except that 1 μl each of
dimethylsulfoxide (DMSO) and bovine serum albumin
(BSA) were added per 25 μl. The ETS amplification
profile was: initial melting phase of 1 min at 97 °C;
followed by 40 cycles of 10 s at 97 °C, 30 s at 55 °C,
30 s at 72 °C; and ended with a final extension phase
of 7 min at 72 °C. The ITS amplification profile was:
initial melting phase of 3 min at 94 °C; followed by
30 cycles of 1 min at 94 °C, 1 min at 52 °C, 1 min at
72 °C; and ended with a final extension of 7 min at
72 °C. Primers used for the amplification of nuclear
[64–67] and chloroplast [68–71] DNA regions are
listed in Additional file 4. PCR amplifications were run
on a BIOMETRA thermocycler. All amplification
products were cleaned using Qia-Quick PCR purifica-
tion kit (Qiagen, Germany) and sent to LGC Genomics
(Germany) for sequencing.
Forward and reverse sequences were edited and

aligned using CodonCode Aligner version 4.0.4
(CodonCode Co., USA) and the consensus was
exported in fasta format. The fasta files were aligned
using SeaView version 4.0 [72] and the OPAL package
[73] inside Mesquite [74] and the resulting alignment
was corrected manually, following the recommenda-
tions of Kelchner [75]. All variable nucleotide positions
were verified against the original electropherograms
and final sequences uploaded to the European
Nucleotide Archive (ENA).

Phylogenetic analyses
Separate and combined analyses of the rps16, trnT-F
(i.e. trnT-trnL spacer + trnLLF region), ITS and ETS
matrices were performed using the Maximum
Likelihood (ML) criterion as implemented in RAxML
v. 8.1.20 [76] and Bayesian Markov Chain Monte Carlo
(MCMC) inference [77] as implemented in the pro-
gram MrBayes version 3.1 [78]. For ML, we run parti-
tioned and unpartitioned analyses, treating each gene
region as one partition. We used the standard com-
mand lines which allow for quick, simultaneous
optimization of substitution model, topology and
branch support via fast, non-parametric bootstrapping
(options -f a; −x; −m GTRCAT). The number of neces-
sary bootstrap (BS) replicates were determined by the
extended majority rule criterion (−\# autoMRE [79]).
MrBayes analyses used the same partitioning scheme
as RAxML and two parallel runs with each one cold and
three heated chains (standard set-up), 106 generations,
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with every 1000th topology sampled. Posterior probabil-
ities (PP) are based on the final 5000 saved topologies
from both runs. Investigation of differential support for al-
ternative relationships can directly reveal significant in-
congruence between nuclear and plastid genealogies.
Phylogenetic resolution at the intrageneric level is typically
low, hence, the lack of (high) support should not be taken
as indication for incongruence per se. Instead we regard
only conflicting relationships as evidence for highly sup-
ported incongruence based on the nuclear vs. plastid data
(BSML > 70, PP > 0.95; arbitrary thresholds following the
common convention in plant phylogenetic literature). Bi-
partition networks [80], a special form of consensus net-
works [81] that use either the bootstrap replicate or
Bayesian saved tree sample as input [82], visualized the
differential support for alternative (competing) relation-
ships (using SplitsTree v. 4.13 [83, 84]; option “count”).
‘Rogue’ taxa were further pinpointed using tanglegrams
generated with Dendroscope 3 [85, 86]; the tanglegrams
were also used to highlight congruence and incongruence
of the nuclear and plastid topologies.
Local, in - detail differentiation patterns used median-

joining (MJ) networks [87], computed with NETWORK
v. 4.6 (Fluxus Technology Ltd) using default settings. MJ
networks, a derivation of the more general median net-
works [88], were originally designed to study intraspe-
cific (interpopulation) differentiation [87]. Here, they are
used for their capacity to infer (parsimony-based) rela-
tionships based on low-divergent data subsets without
forcing each sequence variant to the tip of a single tree
(e.g. [89, 90]). The original matrices were first filtered
for parsimony informative sites (to eliminate “satellite”
sequence variants or singletons differing only by sto-
chastic mutations from others) using PAUP* v. 4b10
[91]; occasional gaps (no prominent length polymorph-
ism present) were treated as 5th base for the inference
(gaps involving more than a single parsimony-
informative site were treated as one mutational event for
the final graphical representation). For MJ networks, the
trnT-trnL and trnLLF region were treated separately to
account for their different diversity.
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