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Abstract

Background: The sulfoxidation of methionine residues within the phosphorylation motif of protein kinase substrates,
may provide a mechanism to couple oxidative signals to changes in protein phosphorylation. Herein, we hypothesize
that if the residues within a pair of phosphorylatable-sulfoxidable sites are functionally linked, then they might have
been coevolving. To test this hypothesis a number of site pairs previously detected on human stress-related proteins
has been subjected to analysis using eukaryote ortholog sequences and a phylogenetic approach.

Results: Overall, the results support the conclusion that in the eIF2α protein, serine phosphorylation at position 218
and methionine oxidation at position 222, belong to the same functional network. First, the observed data were much
better fitted by Markovian models that assumed coevolution of both sites, with respect to their counterparts assuming
independent evolution (p-value = 0.003). Second, this conclusion was robust with respect to the methods used to
reconstruct the phylogenetic relationship between the 233 eukaryotic species analyzed. Third, the co-distribution of
phosphorylatable and sulfoxidable residues at these positions showed multiple origins throughout the evolution of
eukaryotes, which further supports the view of an adaptive value for this co-occurrence. Fourth, the possibility that the
coevolution of these two sites might be due to structure-driven compensatory mutations was evaluated. The results
suggested that factors other than those merely structural were behind the observed coevolution. Finally, the
relationship detected between other modifiable site pairs from ataxin-2 (S814-M815), ataxin-2-like (S211-M215) and
Pumilio homolog 1 (S124-M125), reinforce the view of a role for phosphorylation-sulfoxidation crosstalk.

Conclusions: For the four stress-related proteins analyzed herein, their respective pairs of PTM sites (phosphorylatable
serine and sulfoxidable methionine) were found to be evolving in a correlated fashion, which suggests a relevant role for
methionine sulfoxidation and serine phosphorylation crosstalk in the control of protein translation under stress conditions.
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Background
Under stress conditions, cells respond with a global
reduction of protein synthesis. Although all the phases
of translation are susceptible of being affected, initiation
of translation is considered to be the most important
regulatory step of the translation cycle [1]. In eukaryotes,
translation initiation is a complex and highly regulated
process that requires the action of at least a dozen of
protein factors. One of these factors, eIF2, is a stable
heterotrimeric (subunits α, β and γ) GTPase that binds

the Met-RNAi
Met and delivers it to the small ribosomal

subunit. Pairing between the anticodon of the Met-
RNAi

Met and the AUG start codon from the mRNA,
triggers hydrolysis of GTP by eIF2 and eIF2⋅GDP is
released. Since eIF2⋅GDP cannot bind Met-RNAi

Met,
eIF2⋅GDP should be converted to eIF2⋅GTP by the
heteropentameric exchange factor eIF2B before it can
start a new initiation cycle. In response to stress, phos-
phorylation of eIF2α on Ser-51 stabilizes the complex
eIF2⋅GDP⋅eIF2B and inhibits the GDP-GTP exchange,
which prevents the liberation of an active eIF2⋅GTP,
thereby reducing initiation of translation [2].
Despite the evidence supporting this description, re-

cent results suggest that the picture is incomplete. In
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many cases, this mechanism has been presumed to be
responsible of the observed inhibition of protein synthe-
sis after stress, simply because eIF2α was found
phosphorylated at Ser-51. Indeed, the importance of this
mechanism of translation attenuation may have been
overestimated as convincingly argued by Knutsen and
coworkers [3]. These authors found that when the
fission yeast Schizosaccharomyces pombe was exposed to
hydrogen peroxide, protein synthesis was drastically
reduced and eIF2α was phosphorylated on Ser-52 (hom-
ologous to Ser-51 in mammalian cells). However, when
the mutant eIF2α-S52A was employed in these experi-
ments, the translation was reduced to the same extent as
in wild-type cells, despite the inability of this mutant to
phosphorylate eIF2α at Ser-52 [3]. Results obtained using
other model organisms such as the budding yeast Saccha-
romyces cerevisiae and mammalian cells, also point to the
existence of a hitherto unrecognized mechanism contrib-
uting to the regulation of translation after stress, inde-
pendent of the phosphorylation at Ser-51 on eIF2α [3–5].
One possibility, that should not be ruled out, is that

residues from eIF2α others than Ser-51 may be post-
translationally modified and contribute to the regulation
of the translation initiation. In this sense, during a high-
throughput study aimed at identifying substrates of
kinases related with the cell cycle, eIF2α was found
phosphorylated at Ser-218 [6]. However, whether or not
this phosphorylation has a functional effect remains yet
to be investigated. On the other hand, Met-222 has also
been reported to suffer extensive oxidation to methio-
nine sulfoxide (MetO) after treating the cells with H2O2

[7]. Although oxidation of protein-bound methionine
has been traditionally perceived as an inevitable damage
derived from aerobic metabolism, it is now emerging as
another post-translational modification (PTM) able to
regulate protein activity during stress conditions [8]. To
this respect, we have recently shown that oxidation of
methionine harbored within phosphorylation motifs is a
process highly selective among stress-related proteins,
including eIF2α and other proteins belonging to stress
granules (SGs) [9]. In the current study we have
addressed the working hypothesis that both post-
translational modifications, sulfoxidation of Met-222 and
phosphorylation of Ser-218, may be functionally relevant
and interrelated. To this end, we have followed an
evolutionary approach.
Molecular coevolution between two positions of a

protein occurs when amino acid substitutions at one of
these positions affect the rates of substitution at the
other position [10]. The forces leading to coevolution
derive from functional and/or structural selective
pressures acting to maintain specific combinations of
residues at the coevolving positions. During the last two
decades, much effort has been devoted to investigate

molecular coevolution and a plethora of methods aimed
at detecting coevolving positions have been described
(reviewed in [10, 11]). These can be broadly divided into
those methods that attempt to model coevolution in a
phylogenetic context and, on the other hand, those
methods based on analyzing covariation in multiple se-
quence alignments. Thus, popular approaches to search
for coevolving sites involve substitution correlations [12],
mutual information of amino acid frequencies [13] or a
global statistical model of the multiple sequence align-
ment, as is the case of direct coupling analysis [14, 15]
and protein sparse inverse covariance [16].
Covariation-based methods, which are simpler and

much more popular than those based on phylogenetic
grounds, have been shown useful to predict residue
contacts [15], and have even proved to be valuable tools
for ab initio protein structure predictions. However, as it
has recently been brought to our attention by Talavera
and coworkers, covariation is a poor measure of molecu-
lar coevolution [17]. Therefore, we have followed a
phylogenetic approach to study the evolutionary inter-
relationship between PTM sites. Evidence suggesting a
tight relationship between sulfoxidation and phosphoryl-
ation among stress-related proteins involved in transla-
tion regulation, will be presented and discussed herein.

Methods
Phylogenetic trees and multiple sequence alignment data
sets
Phylogenetic trees and multiple sequences alignments
(MSAs) were initially obtained from eggNOG 4.5, a pub-
lic resource (http://eggnogdb.embl.de) that provides
ortholog groups with integrated functional annotations
[18], using the human eIF2α (P05198) as query protein,
and the Eukaryota as the target taxon. In this way, 272
sequences belonging to 233 species were retrieved.
When multiple paralogs from one species were available,
only the one with the smallest editing distance to the
human homolog was included. Similarly, the original
tree was pruned to reflect the phylogenetic relationship
between the 233 ortholog proteins. In addition to the
pre-computed tree from eggNOG, the phylogenetic rela-
tionship between these 233 sequences was also recon-
structed using the neighbor-joining (NJ) [19]. Trees
based on maximum parsimony (MP) employing the
Fitch algorithm and the nearest neighbor interchange re-
arrangement strategy, and trees based on maximum like-
lihood analysis using a general time-reversible model
with four discrete gamma rate categories, were com-
puted with the assistance of two R packages: phangorn
2.0.4 [20] and ape 3.5 [21]. All these trees, as well as the
MSA and raw data related to eIF2α, can be downloaded
from https://github.com/jcaledo/PTM_sites_coevolution.
Trees and MSAs for other SG related proteins such as
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ataxin-2 (Q99700), ataxin-2-like (Q8WWM7) and Pumi-
lio homolog 1 (Q14671) were obtained from eggNOG
4.5. When the MSAs were not intended to reconstruct
phylogenetic relationships, but to compute the state (the
amino acid found) at different positions in the ortholog
proteins, the MSA was further modified to remove those
columns corresponding with gaps in the human protein
used as reference.

A four-state continuous-time Markov chain model of
evolution
To model the evolution of the residues found at posi-
tions 218 and 222, we used the theoretical framework of
continuous time Markov processes. Since proteins are
built up from a pool of twenty proteinogenic amino
acids, the state space of these markovian models should,
supposedly, be composed by 400 elements. However,
most sites in ortholog proteins generally exist in a lim-
ited number of residue states. Furthermore, because our
interest was focused on detecting coevolving PTM sites,
the cardinality of the state space can be drastically re-
duced. Thus, for the character residue at position 218
(random variable X) two states are possible. When the
residue found is a phosphorylatable one we set X = 1,
and X = 0 otherwise. Similarly, for the character residue
at position 222 (random variable Y) the accessible states
are also two: a sulfoxidable methionine is found at that
position (Y = 1) or any other non sulfoxidable amino
acid is observed at that position (Y = 0). Four combina-
tions of states are possible when these two binary
variables are simultaneously considered. Each of these
four states can either stay the same over the length of a
branch of the phylogeny, or change to one of the three
other states. Fig. 1 links the four combinations of states
by arrows with parameters that describe the evolutionary
rates of transitions between two states of one character,
holding constant the state of the other. This Markov
process is defined by the instantaneous rate matrix:

Q ¼
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The values of the rate parameters describing instantan-
eous double changes, such as (0,0) → (1,1), (0,1) → (1,0),
(1,0) → (0,1) and (1,1) → (0,0) are set to zero because the
probability of both traits changing in the same instant (dt)
is negligibly small and can be ignored. The model,
however, allows both traits to change over a longer time

period, t, but they must have transitioned through
intermediate states. This approach is particularly suitable
to detect evolutionary relationship between two traits, in
which the state of one trait affects the probability of a
change in the other [22].
The constraints that each row sums to zero, and that

dual transitions have a probability of zero over time dt,
means that the rate matrix, Q, defining the Markov
process, is fully specified by eight parameters. However,
if the two traits have evolved independently of one
another, then the rate of change between the two states
of one character will not depend on the background
state of the other. For instance, if the rate of gaining an
oxidable methionine at position 222 does not depend on
the amino acid found at position 218, then q12 = q34.
More generally, the model of independent evolution can
be defined by setting q12 = q34, q13 = q24, q21 = q43 and
q31 = q42. Thus, the model of independent evolution
uses a maximum of four parameters, while the model of
dependent evolution does not place any restrictions on
the parameters, allowing some kinds of transitions to
depend on the background state of the other trait. When
that happens, pairs of states will tend to be associated
with each other in the species data more often than
expected by chance, and the dependent model will
provide a better description of the data.

Fig. 1 Diagram of the Markovian model of evolution for a pair of
PTM sites. For two binary traits, four combined states are possible.
Each state is defined by an ordered pair where the first entry is
either 0 or 1 depending on the absence or presence, respectively, of
a phophorylatable residue at the considered position (trait X). The
second entry of the pair again will be 0 or 1 depending now on the
absence or presence of a methionyl residue at the analyzed position
(trait Y). The allowed transitions between states are indicated by the
arrows and their associated rate parameters, qij
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Likelihood function optimization and likelihood ratio test
Given the assumption of either independence (QI) or
dependence (QD) between X and Y, the corresponding
substitution probability matrices can be calculated using
PI(t) = e(QI

t) and PD(t) = e(QD
t) , respectively. Eigenvalues and

eigenvectors necessary for determining these expressions
were calculated using standard numerical methods. To
find the likelihood of our data given a chosen model, we
have to consider all possible assignments of character
states at the interior nodes. The likelihood of each of
these single realizations is given by the product over all
of the branches of the tree of the appropriate probabil-
ities, as derived from the previously computed substitu-
tion probability matrices using the appropriate branch
lengths. The likelihood of the data will be the sum over
all possible realizations, which will be expressed as a
function of the model parameters. In the Appendix A,
from Additional file 1, we have considered a simple
hypothetical phylogeny and data set to illustrate these
calculations. The maximum likelihood estimates of
parameters are the parameter values that maximize the
likelihood function, and were found numerically using it-
erative optimization algorithms implemented in R [23].
Once the likelihoods for the independence L(I) and
dependence model L(D) were computed, the value of the
likelihood ratio test statistic was obtained according to
the following equation:

LRT ¼ −2 ln
L Ið Þ
L Dð Þ ð2Þ

Although we routinely use the R function ace from the
package ape [21] to fit the so-called Mk models (in our
case M4 models) other functions such as fitDiscrete
(from the package GEIGER) [23] and fitMk from the
package phytools [24] were also used yielding similar
results. Different assumptions regarding the stationary
frequencies of each character state, only involved slight
differences in parameter estimates and likelihoods. Thus,
regardless of the frequency vector used (‘equal frequen-
cies’, ‘estimated frequencies from the stationary distribu-
tion of Q’ or ‘observed frequencies’) the conclusion was
always the same: the dependent models of evolution
explained much better the data than the independent
models (LRT = 15.9, 15.4 and 15.6, respectively).

Pairwise comparison analyses
Using the multiple protein sequence alignment of eIF2α,
pairs of species contrasting in both binary characters
(absence/presence of phosphorylatable residue at 218
and absence/presence of sulfoxidable residues at 222)
were searched and analyzed as described by Maddison
[25] and implemented in Mesquite 3.10.

Stochastic character mapping
We used stochastic character mapping [26] to infer 10
possible evolutionary histories of residues at positions
218 and 222 on the phylogenetic tree of eukaryotic IF2α
protein. To this purpose we employed the function
make.simmap in the phytools package (v. 0.5–38) for R
[24]. For the parametrization of make.simmap, we used
a model of unequal rates. To check the robustness of
the obtained results, we tested two methods, Q = “empir-
ical”, which first fits a continuous-time Markov model
for the evolution of our combined characters, and then
simulates stochastic character histories using that model
and the data (the tip states on the tree). Alternatively,
Q = “mcmc”, first samples Q 10 times from the posterior
probability distribution of Q using Markov chain Monte
Carlo, and then it simulates 10 stochastic maps condi-
tioned on each sample value of Q. Apart from slightly
higher variances in the number of transitions between
states through the simulated histories, both methods
provided similar results.

Protein stability of double-mutants
The thermodynamic stability changes (ΔΔG) of single
and double-mutants at different positions of eIF2α were
computed using the protein design tool FoldX version
4.0 [27]. FoldX uses a full atomic description of the pro-
tein structure to provide a quantitative estimation of the
importance of the interactions contributing to the stabil-
ity of the protein. For this purpose, the different energy
terms taken into account, which have been described in
detail somewhere else [28], have been weighted using
empirical data obtained from protein engineering experi-
ments. The 3D structure of eIF2α (1Q8K) was subjected
to an optimization procedure using the RepairPDB
command from FoldX. Afterwards, 400 double-mutant
models were built for each pair of positions. For in-
stance, for the study of the pair S218X-M222Y, 400
models were built and analyzed (with X and Y belonging
to the set of twenty proteinogenic amino acids).

Results
Residues at positions 218 and 222 from eIF2α have been
coevolving
Two positions of a protein are said to be coevolving if
they mutually influence their evolutionary rates. As it
has already been pointed in the Introduction, covariation
is a poor measure of molecular coevolution [17]. There-
fore, we rather resorted to a maximum likelihood
methodology for detecting correlated evolution on
phylogenies. The method, which is an adaptation of that
originally proposed by Mark Pagel in a seminal work
published in 1994 [22], relies on a model based on
Markov chain in continuous time and the optimization
of the associated likelihood function to obtain the
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model’s parameters that best fit the data. Our data set
encompasses a phylogenetic tree of the eIF2α protein
from 233 eukaryotic species, including branch lengths,
as well as information about the residues found at
positions 218 (character or variable X) and 222 (charac-
ter or variable Y) in these ortholog proteins (Additional
file 1: Figure S1).
To test for correlated evolution between variables X

and Y, we used a likelihood ratio test (LRT) to compare
the performance of two models, one assuming independ-
ent evolution of the characters and one assuming
coevolution (see Methods). The likelihood ratio test
significantly supported the dependent model (LRT = 15.9,
df = 4, p = 0.003). Although the χ2 distribution is the
asymptotic distribution for the LRT statistic when the
compared models are nested, it may not always apply
directly. Whether the LRT statistic is distributed as a χ2

may depend upon the values of the rate parameters and
the amount of data [22], as well as the tree structure and
the equilibrium state frequencies [29]. Therefore, to con-
clude with confidence that the coevolutionary model is
better model for our data, we turned to the Monte Carlo
parametric bootstrapping technique. Briefly, we started
by finding the maximum likelihood estimates (MLE) of
the four parameters of the model of independent evolu-
tion that best fitted to our data. These MLE parameters
were then used to evolve the two characters along the
established phylogeny in 1000 simulations. Using the
data from these simulations, the dependent and inde-
pendent models were fitted and their likelihoods com-
puted. The likelihood ratios, of the two models for each
simulation, were used to form the null distribution that
is shown in Fig. 2 as a bar histogram plot. As it can be
observed, the empirical Monte Carlo distribution of the
statistics LRT matched quite closely the chi-squared dis-
tribution with four degree of freedom. Therefore, the
model of independent evolution can be rejected with
high confidence in favor of the coevolution model.

The evolutionary codependence between positions 218
and 222 is linked to PTM
The existence of correlated evolution between the sites
218 and 222 has been examined above by linking to each
position a biological character. Concretely, the presence/
absence of phosphorylatable residues at 218 and the
presence/absence of a sulfoxidable amino acid at 222.
Thus, the concluded codependence may be related to
the PTMs studied. However, residue-residue interactions
unrelated to the phosphorylation-sulfoxidation interplay
may lead to the observed coevolutionary signal when
collapsing residues in a reduced dictionary. To investi-
gate this possibility, we have explored the codependence
between these sites using different sets of residues to de-
fine the model states. For instance, one of the different

alternative that were assessed was: X = 1 if at position
218 is found a residue sensitive to deamidation (aspara-
gine or glutamine) and Y = 1 if the non-polar valine is
present at position 222. In this way, the evolutionary
codependence of these traits, X and Y, was studied for
16 alternative definitions of states. As it can be observed
in Table 1, none of these alternative definitions led to a
significant coevolutionary signal. This lack of codepend-
ence, in these other reduced dictionaries, support a link
between the coevolution at these positions and the
PTMs undergone for the residues present at these sites.

Robustness of the coevolution model with respect to the
phylogeny
A fundamental assumption of the maximum likelihood
approach is a correct topology of the used tree, as well
as an accurate estimation of their branch lengths [22].
To check the robustness of our conclusion regarding the
evolutionary relationship between Ser-218 and Met-222,
we carried out the coevolutionary analysis described
above, but employing trees that were reconstructed
using different methods. The results of such analyses are
summarized in Table 2. Although the trees obtained
using methods based on genetic distances, maximum
parsimony and maximum likelihood were slightly differ-
ent between them, in all the cases we concluded that the
model of coevolution between both PTM sites fit the
observed data significantly better than the model of
independent evolution, regardless of the method used to
reconstruct the phylogeny.

Reliability of the maximum likelihood approach to detect
functional PTMs
Residues that are close in the three-dimensional struc-
ture of the protein are expected to mutually influence
their evolution more often than residues that are far
away from each other, merely due to structural reasons
[29]. Since both PTM sites (Ser-218 and Met-222) are
four residues away from each other, we wanted to
explore whether causes other than structural may under-
line the observed coevolution between them. To this
end, we carried out the following control analyses.
Ser-218 and Met-222 are located in a loop between

helix α6 and strand β7 from the C-terminal domain of
eIF2α. Thus, we selected all the pair sites found outside
helices and strands that included a modifiable residue
(either Ser, Thr, Tyr or Met) together with the amino
acid found four positions downstream from it, but still
remaining within the same loop (Fig. 3). In this way, five
control site pairs were selected, including a positive
control site pair such as that formed by Ser-51 and the
hydrophobic residue Ile-55, which is expected to show a
high degree of coevolution due to the well known func-
tional relevance of these sites [30]. On the other hand,
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the remaining four site pairs are referred to as negative
control because they include non-regulatory sites [31].
That is, residues that may be modified only as conse-
quence of off-target interactions and therefore are
thought to be of little, if any, functional significance [32].
All these control site pairs were subjected to analysis
using the same maximum likelihood methodology used
to analyze the pair Ser-218/Met-222 under study. The
results of such coevolutionary analyses are summarized
in Table 3. As it can be observed, data related to non-
functional site pairs are best explained by assuming in-
dependent evolution, in spite of the proximity between
the sites. In contrast, the functional pair Ser-51/Ile-55,
used as positive control, yielded a high LRT indicative of
the good performance of the current procedure to detect
functionally important PTMs.
To further explore the possibility that the three-

dimensional distance between these pairs of residues
may influence the observed coevolutionary signal, we ex-
tended the set of control pairs to include all the pairs
formed by a target residue (either Ser-218 or Met-222)
and a second residue in the vicinity within the α6/β7
loop (Fig. 4). Using all these pairs, we failed to detect
any relationship between the distance (in ångströms)
separating the pair members and their evolutionary
codependence, as estimated by their LRT statistic
values (Table 3 and Additional file 1: Figure S2). In
addition, we also addressed whether the structural
importance of the pair of sites might be a key deter-
minant of their evolutionary codependence. To this

end, for each pair of sites the mean thermodynamic
stability change (ΔΔG) for the 400 possible double-
mutants was computed and plotted against its LRT.
Again we failed to observe a relationship between
these variables (Additional file 1: Figure S3).

Vigilance against over-interpretation
In a recent work Maddison and Fitzjohn warn against
the risks of over-interpreting the results of phylogenetic
correlation tests based on Pagel’s method. Although
these well-respected methods are commonly used in
many biological fields, they do not eliminate pseudo-
replications derived from a single evolutionary event
[33]. They argue that, in some circumstances, the co-
distribution between two characters along the phylogeny
may be the result of sharing a pair of synapomorphic
characters, each emerged by its own independent causes
in a common ancestor, and then maintained each by its
own causes in the descendants. Such a situation is what
these authors call Darwin’s scenario. Therefore, if we
want to support the conclusion that serine phosphoryl-
ation and methionine oxidation form part of the same
functional network, Darwin’s scenario should be ruled
out. In Fig. 5a the same phylogeny of eIF2α is mirrored
to show the state of character X (absence/presence of
phosphorylatable residue) at left, and Y (absence/pres-
ence of methionine) at right. On the other hand, Fig. 5b
shows a hypothetical co-distribution of both characters
made up to illustrate Darwin’s scenario. As it can be
deduced from this figure, the co-distribution of

Fig. 2 Comparing models of evolution for the S218-M222 PTM site pair on eIF2α. The compared models were one assuming independent evolution
of both PTM sites (null model), and an other assuming coevolution (alternative model). The likelihood value under a given model measures the fit of
that model to data. Hence, the two models can be compared by comparing their respective likelihood values. The computed LRT statistic value for the
independent versus dependent evolution was 15.9 (arrow). Since in our case both models were nested (see Methods), the probability distribution of
the LRT statistic, assuming that the null model is true, can be approximated by a χ2 distribution with four degree of freedom (black continuous curve).
In this way, the null model (independent evolution of both sites) could be rejected with a p-value of 0.003. The same conclusion was reached when
the distribution of the LRT statistic was derived by Monte Carlo simulation (histogram bars)
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phosphorylatable and sulfoxidable residues throughout
eukaryotes does not seem to fit in Darwin’s scenario.
In an attempt to numerically support this graphic result,

we resorted to pairwise comparisons of terminal taxa to test
for character correlation [25]. Only pairs of taxa that

differed in both characters and were phylogenetically separ-
ate were considered. A pair is said to be phylogenetically
separate if the path between the members of the pair, along
the branches of the tree, do not touch the path of any other
pair (Fig. 6). Since we are examining pairs contrasting in
both characters, there are two types of possible pairs: a pair
is considered to be positive when the presence of a phos-
phorylatable residue in a member of the pair is accompan-
ied by a methionine in the same member of the pair ({(1,1),
(0,0)}), otherwise the pair is referred to as negative ({(1,0),
(0,1)}. The idea underlying this analysis is simple. When
pairs of species contrasting in the state of a particular char-
acter are examined, the member of a pair with a particular
state might be more likely than the other member to ex-
hibit a particular state in the second character. In other
words, the null hypothesis states that the number of posi-
tive pairs is equal to the number of negative pairs. When
we subjected our data to such an analysis, we found that
many different maximal pairings could be defined (a max-
imal pairing is a set of phylogenetically separate pairs of ter-
minal taxa that contains the most pairs possible for the
given tree). In all the cases, these pairings contained five
positive pairs and one negative pair (Fig. 6). Pairwise com-
parison analysis can avoid the pitfalls of being influenced by
a single origin of a character state by choosing pairs of taxa
that contrast in the states of both variables. However, the
method uses only a small subset of taxa, discarding much
of the data, and so it has a very low power to detect correla-
tions [33]. That seems to be the case with our data. Despite
that the number of positive pairs overtook the number of
negative ones (five to one), the difference did not reach stat-
istical significance due to the low number of total phylogen-
etically separate pairs (only six). Nevertheless, the fact that
among contrasting pairs the probability of being positive is
five times greater than that of being negative allows, at
least, to rule out a single origin of the phosphorylatable-
sulfoxidable co-distribution among eukaryotes.

Stochastic character mapping also supports coevolution
To tackle the potential problem of non-independence in
phylogenies using a different approach, we took advantage
of the idea underlying Ridley’s method, which was

Table 1 Sets of residues unrelated to the crosstalk between
phosphorylation and sulfoxidation do not show coevolutionary
signal

Group Set at 218 Set at 222 LRT p-value

Positive {S,T} {M} 15.9 0.003

Control-1 {S,T} {V} 2.4 0.668

Control-1 {S,T} {C} 3.1 0.542

Control-1 {S,T} {N} 4.6 0.336

Control-1 {S,T} {L} 0.0 1.000

Control-2 {N,Q} {M} 3.7 0.449

Control-2 {G,A} {M} 0.0 1.000

Control-2 {D,E} {M} 0.0 1.000

Control-2 {H,K} {M} 0.0 1.000

Control-3 {Q,N} {V} 0.2 0.993

Control-3 {G,A} {V} 6.2 0.181

Control-3 {D,E} {V} 0.0 1.000

Control-3 {H,K} {V} 3.5 0.475

Control-4 {Q,P} {G} 0.0 1.000

Control-4 {W,V} {A} 0.0 1.000

Control-4 {L,T} {I} 0.0 1.000

Control-4 {I,Y} {H} 0.0 1.000

The existence of correlated evolution between the sites 218 and 222 was
examined using different sets of residues to define the model states. Thus,
beside the sets formed by phosphorylatable residues at 218 and sulfoxidable
methionine at 222, used as positive reference, four other types of set
combinations were analyzed. In the first type (Control-1, rows 2–5), the
residues providing X = 1 are still serine and threonine, but the residue making
Y = 1 is now different to methionine (as indicated in the table). Val, Cys, Asn
and Leu have been selected because of their frequencies (from higher to
lower) at position 222 in the eukaryotic species examined. The second group
of control analyses (Control-2, rows 6–9) always included methionine at
position 222 as the residue providing Y = 1, while the set leading to X = 1 was
now formed by a pair of non-phosphoaceptor amino acids of similar physicochemical
properties. The third group (Control-3, rows 10–13) was formed by sets of residues
that were neither phosphorylatable nor sulfoxidable. Finally, the fourth
group (Control-4, last four rows), was established by randomly taking the
sets, among the twenty proteinogenic amino acids. The LRTs obtained, and
their respective p-values, are shown

Table 2 Influence of the phylogeny on the likelihood ratio test between the models of dependent and independent changes

Tree Ln(L) Fitch score Topology difference Branch score LRT p-Value

eggNOG −43,009 7499 0 0 15.9 0.0030

NJ −43,677 7596 198 1.664 20.8 0.0003

MP −60,127 7472 28 426.745 14.1 0.0070

ML −37,544 7511 111 1.118 17.1 0.0020

Besides the pre-computed tree from eggNOG, trees reconstructed using the methods of neighbor-joining (NJ), maximum parsimony (MP) and maximum likelihood
(ML), were used to test the hypothesis of correlated evolution between Ser-218 and Met-222. In addition to the LRT and its related p-value, the table shows the
natural logarithm of the likelihood, Ln(L), and the Fitch score for each tree. The distance between each tree and that from eggNOG was assessed using either the
metric proposed by [53] (topology difference) or the branch score proposed by [54]. The former, is defined as twice the number of internal branches that differ in
their splits, while the latter is defined as the sum of squares of the differences between each branch’s length in both trees
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specifically tailored to get around the problem of pseudo-
replications [34]. In the original description of the method,
the character states of internal nodes are reconstructed
using parsimony. Once the internal nodes have been
assigned, one works through the phylogeny keeping a tally
of the number of transitions in the tree. More concretely,

the method scores transitions only in those branches
for which the beginning and end-states differ. That
is, branches along which no change occurs are not
included. By not including such branches, the
method avoids counting species or internal nodes
that share character states with an immediate

Fig. 3 Spatial distribution of structurally comparable residue pairs from eIF2α. Ribbon cartoon of the three-dimensional structure of the α subunit of
human eIF2 (PDB 1Q8K). The modifiable residues (either Ser, Thr, Tyr or Met) located outside helices and strands are displayed using stick representation,
as well as those amino acids found four positions away from them

Table 3 Sites from non-regulatory pairs evolve independently despite their spatial proximity

Group Sites Regulatory Loop Distance ΔΔG LTR p-value

A S51-I55 Yes β3/β4 6.2 −0.6 ± 1.2 27.7 1.5 10−5

A S90-K86 No β5/α1 9.2 2.1 ± 1.3 5.4 0.242

A S157-I161 No α4/α5 9.7 0.0 ± 0.8 3.9 0.420

A Y199-G203 No β6/α6 8.8 9.7 ± 4.8 0.0 1.000

A S218-M222 Yes? α6/β7 6.3 2.2 ± 2.0 15.9 0.003

A M289-E293 No CT 9.5 −0.3 ± 0.8 5.9 0.207

B C217-M222 No α6/β7 9.9 1.2 ± 2.1 2.1 0.712

B S218-M222 Yes? α6/β7 6.3 2.2 ± 2.0 15.9 0.003

B T219-M222 No α6/β7 4.9 0.6 ± 1.6 0.0 1.000

B E220-M222 No α6/β7 6.7 1.4 ± 1.6 6.5 0.164

B N221-M222 No α6/β7 5.3 1.5 ± 1.9 6.6 0.158

B P223-M222 No α6/β7 5.3 2.1 ± 1.5 10.5 0.033

C S218-C217 No α6/β7 4.4 1.6 ± 1.9 8.5 0.075

C S218-T219 ? α6/β7 4.4 0.5 ± 1.4 17.9 0.001

C S218-E220 No α6/β7 8.4 1.7 ± 1.3 12.9 0.012

C S218-N221 No α6/β7 9.7 2.0 ± 1.8 8.1 0.088

C S218-M222 Yes? α6/β7 6.3 2.2 ± 2.0 15.9 0.003

C S218-P223 No α6/β7 7.7 2.6 ± 1.4 10.5 0.033

The LRTs between the models of correlated and uncorrelated evolution were computed for the indicated site pair, as well as their associated p-values. The
distances, in ångströms, between residues are also given. The pairs shown in the upper part of the table (Group A) are those whose members are four residues
away from each other and they are outside helices and strands. Three of these tested site pairs were found within the N-terminal domain (NTD), while the other
three were located in the C-terminal domain (CTD) of the eIF2α protein. In the middle (Group B) and lower (Group C) parts of the table, the relationships between
M222 and its neighbors and S218 and its neighbors, respectively, are analyzed. For each pair of sites, the thermodynamic stability change (ΔΔG) for the 400
possible double-mutants was computed and the mean ± standard deviation is shown in kcal/mol
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common ancestor, and which thereby cannot be con-
sidered independent data points. Herein, instead of
reconstructing the states of both characters at in-
ternal nodes using parsimony, which have a number
of serious limitations [26], we rather carried out sto-
chastic character mapping using a Markov chain
Monte Carlo approach to sample character histories
from their posterior probability distribution. In this
way, after simulating 10 stochastic character histor-
ies, a contingency table showing the number of
branches along which transitions occurred that
ended in each of the four possible states, {(0,0),
(0,1), (1,0), (1,1)}, could be computed (173, 22, 285
and 68, respectively). Making use of such contin-
gency table, the null hypothesis that changes at
position 218 (character X) and 222 (character Y)
were independent was rejected (p-values = 0.021 and
0.016, for Yates’ chi-squared and Fisher’s exact tests,
respectively).

Phosphorylation-sulfoxidation relationship in other stress-
related proteins
For most protein kinases, the selection of target sub-
strates is strongly influenced by the amino acid se-
quence surrounding the phospho-acceptor site [35].
The amino acids within these environments that

either promote or compromise the phosphorylation
are referred to as specificity determinants. In a recent
work, we investigated those phosphorylation motifs
where methionine may play a role as specificity
determinant, finding that the reversible oxidation of
methionines located at one (P + 1) or four (P + 4)
positions carboxyl-terminal to the phosphosite was a
process highly selective among stress-related proteins,
which may couple oxidative signals with changes in
protein phosphorylation [9]. In this way, besides
eIF2α other three proteins constituents of SGs, such
as ataxin-2, ataxin-2-like and pumilio homolog 1,
were identified as potential targets for crosstalk
between sulfoxidation and phosphorylation [9]. In
humans, each of these proteins contains a serine that
has been proved to be phosphorylatable [36] and that
is accompanied by a methionine either at P + 1 or
P + 4. In addition, these methionine residues are
known to be oxidized in vivo after an oxidative
stimulus [7]. Herein, the coevolution of these PTM
site pairs (phosphorylatable serine and sulfoxidable
methionine) was evaluated by the markovian-
likelihood method described above for eIF2α. Table 4
summarizes the results of such analyses. As it can be
observed, the evolution of the PTM site pairs was
significantly better explained, in all the cases, by the
dependent evolution model when compared to the
model that assumed independent evolution.

Discussion
Many of the cellular responses triggered by oxidative
stress are known to be mediated by signaling cascades
involving protein phosphorylation [37, 38]. Despite the
enormous research effort that has been devoted to the
study of protein phosphorylation, the molecular mecha-
nisms coupling oxidative signals to changes in phosphor-
ylation remain poorly understood. A direct way through
which oxidants may be sensed and transduced into
biological responses involves reversible oxidation of
protein-bound methionine to MetO [8]. Like phosphor-
ylation, methionine oxidation is a reversible covalent
PTM that can impact protein function in different ways.
Thus, it has been shown that sulfoxidation of specific
methionine residues can determine the subcellular
distribution and activity of the target protein [39–41]. In
yet another parallelism with phosphorylation, methionine
oxidation can lead to either down-regulation [42, 43] or
up-regulation [44, 45] of protein activity. In addition, both
methionine oxidation and methionine sulfoxide reduction
are reactions that can be enzyme-catalyzed [46, 47]. In this
context, it has been proposed that oxidation of methio-
nine, that converts the side chain of this amino acid from
hydrophobic to hydrophilic [48], may provide the basis for
regulating the specificity of protein kinase-substrate

Fig. 4 Structure of the α6/β7 loop from eIF2α. The spatial disposition
of the residues forming α6/β7 is shown using stick representation
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interactions [49, 50]. In a previous study, we addressed the
potential for crosstalk between sulfoxidation and phos-
phorylation at the proteome scale, reaching the conclusion
that the interplay between serine phosphorylation and me-
thionine oxidation was most prevalent among proteins in-
volved in the control of translation during stress response.
However, no study, hitherto, has developed an evolution-
ary approach to address the potential crosstalk between
these two PTM types. To this respect, the original ration-
ale for the current work was that if two PTM sites are
functionally related and they are modified in a coordinated
fashion, then they might have been coevolving over time.
Among the wide range of computational methods that

have been proposed to detect coevolving residues
(reviewed in [11, 51]), several exist that attempt to model
coevolution in a phylogenetic context [29, 52]. However,
far more popular methods are those that search for
covariation between sites in a tree-independent manner.
Although the need to account for the phylogenetic rela-
tionship is a well-acknowledged fact among evolutionary
biologists, it has been poorly addressed, or simply ignored,
by those authors more biased toward functional and/or
structural biology. However, because molecular sequences
share common ancestries and are therefore not independ-
ent from each other, the underlying evolutionary history

of sequences should be taken into account if we pretend
to properly extract the coevolutionary signal out of the
noise. Therefore, even though less popular, conceptually
more complex and computationally expensive, we
resorted to a phylogenetic method to assess whether the
two eIF2α PTM sites of interest have been coevolving
along the eukaryotic tree. To this end, the method
proposed by Pagel to detect correlated evolution on
phylogenies [22] was tailored to meet the requirements
imposed by the molecular model. According to this
method, a likelihood ratio test was used to discriminate
between two models that were fitted to the data. Both
models were based on continuous-time Markov processes,
one allowing only for independent evolution of the two
PTM sites, the other allowing for correlated changes. The
results of this analysis convincingly favored the model
where both characters evolve influencing each other. To
further strengthen the conclusion that these PTM sites
are bona fide coevolving sites, we accounted for the uncer-
tainty in the phylogeny by repeating the analysis on differ-
ent trees obtained using diverse approaches. To this
respect, we can be confident that the described coevolu-
tion of these two PTM sites is a robust conclusion with
respect to slight differences in the phylogeny employed
(Table 2).

Fig. 5 Co-distribution of phosphorylatable and sulfoxidable residues through eukaryote evolution. a. The same phylogeny of eIF2α is mirrored to
show the pattern of co-distribution of phosphorylatable and sulfoxidable residues. In the rightwards tree, the presence/absence of a phosphorylatable
residue at position 218 of eIF2α in that eukaryotic species is indicated by a red/blue dot, respectively. Similarly, the presence/absence of a sulfoxidable
residue at position 222 is indicated by a red/blue dot in the leftwards tree. b. Hypothetical co-distribution of both characters, made up to illustrate
Darwin’s scenario: when the co-distribution of specific states of two characters is the result of sharing a pair of synapomorphic characters, each
emerged independently and then maintained each by its own motives in the descendants
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The statistical evidence that these two traits (PTM
sites) coevolve across a range of species suggests that
common selective pressures have been acting on the
traits, which may point to a functional or adaptive
relationship between them. Such conclusion was further
supported by two additional observations. Firstly, the
co-localization of a phosphorylatable residue at position
218 and a sulfoxidable methionine at 222 has emerged
several times over the evolution of eukaryotes (Figs. 5
and 6), and secondly, something more than a mere
structural effect seems to be behind the observed coevo-
lution of these sites (Table 3 and Additional file 1:
Figures S2 and S3). Indeed, it is expected that residues

that are close in the spatial structure of the protein will
mutually influence their evolution. At such sites, a sub-
stitution that partly destabilizes the protein structure
could be compensated by a subsequent change at an ad-
jacent site to restore the stability. However, the results
summarized in Table 3 suggest a functional, rather than
structural, relationship between Ser-218 and Met-222.
Hence, we hypothesize that the oxidation status of Met-
222 allows protein kinases to monitor oxidative stress
and subsequently to code this information in terms of
Ser-218 phosphorylation. At this juncture, we wondered
whether the presence/absence of a phosphorylatable
residue at position 218 would influence the strength of
the selective pressure acting on position 222, or, alterna-
tively, whether possessing a sulfoxidable methionine at
the position 222 promotes the gain/maintenance of a
phospho-acceptor at 218. To examine these potential
scenarios, we performed a number of analyses using re-
duced models. For instance, the hypothesis that the
presence of a phosphorylatable residue favors the gain of
methionine, was investigated by testing whether the rate
of the transition parameter q34, (1,0) → (1,1), differed
from the rate of the transition parameter q12, (0,0) →
(0,1). Unfortunately, with the data at hand, there was
not sufficient evidence to reject the null hypothesis for
any of the examined reduced models (results not

Fig. 6 Separate evolutionary origins of the co-occurrence of modifiable residues at positions 218 and 222 of eIF2α. The combined character states
were encoded with colors as follows. Blue (state 1: (0,0)); yellow (state 2: (0,1)); green (state 3: (1,0)); red (state 4: (1,1)). Those pairs of species that
differed in both characters and were phylogenetically separate (the path between them along the branches of the tree do not touch the path of
any other pair) are shown connected by a thick orange line. Since we are examining pairs contrasting in both characters, there are two types of
possible pairs: a pair is considered to be positive when the presence of a phosphorylatable residue in a member of the pair is accompanied by a
methionine in the same member of the pair {red, blue}, otherwise the pair is referred to as negative {yellow, green}. In addition, to show that the
co-occurrence of both PTMs has multiple and independent evolutionary origins, it can also be noted that the number of positive pairs is greater
than the number of negative pairs

Table 4 Testing for correlated evolution between PTM sites
from SG

Protein Sites l(I) l(D) LRT p-Value N

eIF2α S218-M222 −108.2 −100.2 15.9 0.003 233

Ataxin-2 S814-M815 −95.3 −89.8 10.9 0.027 215

Ataxin-2-like S211-M215 −135.0 −120.8 28.3 10−5 215

Pumilio homolog 1 S124-M125 −38.9 −23.3 31.2 2.8 10−6 51

The column ‘Sites’ gives the residue (S: serine and M: methionine) found at the
indicated position in the human ortholog sequence. LRT stands for the
likelihood ratio test statistics and N for the number of species included in the
analyses. l(I): natural logarithm of the likelihood value for the model of
independent evolution. l(D): natural logarithm of the likelihood value for the
model of dependent evolution
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shown). Therefore, although the results from the current
work strongly support the conclusion that both PTM
sites have been coevolving, we failed to identify the
probable temporal ordering of changes in these two
traits.
Methionine, a relatively hydrophobic amino acid, can

be found as a specificity determinant in a number of
protein kinase substrate motifs [35]. Although methio-
nine can occupy any position within these canonical
recognition motifs, it is most often found at 1 or 4 posi-
tions carboxyl-terminal to the phosphorylatable serine
(P + 1 and P + 4, respectively). On the other hand,
oxidation of methionine at these positions has been
described as a process highly selective, as opposite to
random [9]. Since the oxidation of methionine to me-
thionine sulfoxide converts the side chain of this amino
acid from hydrophobic to polar and increases the cap-
acity for H-bonding [48], the redox state at positions
P + 1 and P + 4 can impact the recognition of these pro-
tein substrates by their cognate protein kinase and/or
phosphatase, providing, in this way, a mechanistic coup-
ling between oxidative signals and phosphorylation sta-
tus. Interestingly, when, in a previous study, we carried out
GO analysis to gain insight into the processes that may be
regulated by crosstalk between Ser/Thr phosphorylation and
sulfoxidation of methionine at P + 1 or P + 4, it turned out
that the occurrence of MetO near phosphoserine was more
prevalent in proteins related to control of translation and
stress related proteins. In addition, a small set of proteins re-
lated to SGs was identified as potential target for crosstalk
between sulfoxidation and phosphorylation. Therefore, in
the current study we extended the coevolutionary analysis
described for eIF2α to this set of stress-related proteins. For
the four analyzed proteins, their respective pairs of PTM
sites (phosphorylatable serine and sulfoxidable methionine
at either P + 1 or P + 4) were found to be evolving in a
correlated fashion (Table 4), which again suggests a rele-
vant role for methionine sulfoxidation and serine phos-
phorylation crosstalk in response to oxidative stress.
Overall, the findings described in this study should en-
courage further systematic biochemical and genetic stud-
ies aimed at understanding the role of methionine
sulfoxide in the control of protein translation.

Conclusions
Protein-bond methionine sulfoxidation was initially per-
ceived as an inevitable damage derived from aerobic metab-
olism. However, this view of methionine as a vulnerable
residue representing the Achilles’ heel of proteins has been
gradually changing since in the 1990s Levine and coworkers
proposed a role in the antioxidant defense for methionine
residues as ROS scavengers More recently, the sulfoxidation
of certain specific methionine residues is emerging as a post-
translational modification capable of regulating protein

activity during stress conditions. In this line, we have shown
that the oxidation of methionines housed within phosphoryl-
ation motifs is a highly selective process among stress-
related proteins. In the current study, using evolutionary
models based on continuous-time Markov chains, we have
addressed the interrelationship between phosphorylation
and sulfoxidation in four proteins related with the SGs. We
have found their respective pairs of phosphorylatable-
sulfoxidable PTM sites to be evolving in a correlated fashion
through the eukaryotic lineage, which suggests a relevant
role for serine/threonine phosphorylation and methionine
sulfoxidation crosstalk in the control of protein synthesis
during stress conditions.
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