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Abstract

Background: Transposable elements are major contributors to genome size and variability, accounting for
approximately 70-80% of the maize, barley, and wheat genomes. PIF and Pong-like elements belong to two
closely-related element families within the PIF/Harbinger superfamily of Class Il (DNA) transposons. Both elements
contain two open reading frames; one encodes a transposase (ORF2) that catalyzes transposition of the functional
elements and their related non-autonomous elements, while the function of the second is still debated. In this
work, we surveyed for PIF- and Pong-related transcriptional activity in 13 diploid Triticeae species, all of which have
been previously shown to harbor extensive within-genome diversity of both groups of elements.

Results: The results revealed that PIF elements have considerable transcriptional activity in Triticeae, suggesting that
they can escape the initial levels of plant cell control and are regulated at the post-transcriptional level.
Phylogenetic analysis of 156 PIF cDNA transposase fragments along with 240 genomic partial transposase
sequences showed that most, if not all, PIF clades are transcriptionally competent, and that multiple transposases
coexisting within a single genome have the potential to act simultaneously. In contrast, we did not detect any

transcriptional activity of Pong elements in any sample.

Conclusions: The lack of Pong element transcription shows that even closely related transposon families can
exhibit wide variation in their transposase transcriptional activity within the same genome.
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Background

Triticeae is a pooid tribe with approximately 30 genera
and 300-400 species [1], including wheat, barley, and
rye. The tribe’s economic importance has made it the
focus of many evolutionary and genetic studies over the
last few decades. The Triticeae genome is large and
complex, with approximately 70-80% composed of
transposable elements (TEs) [2-7].

Eukaryotic TEs have been divided into two main groups
based on their structure and transposition mechanism.
Class I TEs (retrotransposons) transpose by reverse
transcription of an RNA intermediate, while Class II TEs
(DNA elements) transpose via a double-stranded DNA
intermediate through a “cut and paste” mechanism
whereby the element is excised and reinserted elsewhere
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in the host genome. These usually have terminal inverted
repeats (TIRs) whose size and sequence are characteristic
of the family or superfamily to which the element belongs.
Autonomous Class II elements encode all functional prod-
ucts required for transposition, including a transposase
gene (TPase) that catalyzes DNA cleavage and transpos-
ition. Non-autonomous elements are usually deletion
derivatives of autonomous elements that only retain the
terminal sequences necessary for recognition and activa-
tion by the transposition machinery of autonomous
elements [8, 9]. All TE superfamilies contain both autono-
mous and non-autonomous elements [10].

Transposable elements are major contributors to gen-
ome size and variability, and gene evolution [11-16].
Their ability to move and amplify within a genome re-
sults in mutational activity that can alter gene structure
and function [17, 18] through loss of genes [12, 14, 15],
changes in expression levels [19], or evolution of new
functions [20-22]. Once integrated in the genome, some
TEs accumulate mutations and become transcriptionally
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and/or transpositionally inactive [23-26]. A fine balance
between transcription, transposition, and host survival
should be reached, and the host tightly controls the
activity of TEs [27]. However, despite mutation and cell
control, some TEs remain transcriptionally and transpo-
sitionally active [28—-34].

This work is focused on the transcriptional activity of
a superfamily of Class II elements called PIF/Harbinger
in the genomes of 13 diploid species from the wheat
tribe, Triticeae. The PIF/Harbinger elements form a
widespread superfamily of DNA transposons, which con-
sists of PIF and Pong-like elements. PIF and Pong-like
elements were first discovered in the maize [34] and rice
[30] genomes, respectively, and they have since been de-
tected in the genomes of many flowering plants, animals,
and fungi [28, 35-38].

Most PIF and Pong elements are approximately 4—
6 kb long [28, 30, 35] and contain two open reading
frames (ORFs), one encoding a transposase (ORF2), and
one whose function is still not known (ORF1) (Fig. 1a),
though it is thought to be involved in DNA binding
activity and protein-protein interactions [39-42]. The
transposase contains a “DDE” motif, a signature consist-
ing of an amino acid triad identified in the transposases
of most DNA transposon superfamilies (Fig. 1a) [43, 44].
The “DDE” motif consists of two aspartic acid (D) resi-
dues and glutamic acid (E) residue interspersed within a
relatively well conserved domain of amino acids, which
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has been used to establish the evolutionary relationships
among PIF and Pong elements [35, 37, 38, 42, 45, 46]. In
some PIF elements the transposase gene is interrupted
by between one to three insertions characterized as
introns [36, 38, 47].

We have demonstrated that PIF and Pong elements in
the genomes of diploid Triticeae species are abundant
and highly variable, and represent multiple diverse line-
ages within genomes that appear to predate the origin of
the tribe itself [45, 46]. To determine whether they are
transcriptionally active, we screened 15 diploid individ-
uals from 13 species for the presence of PIF and Pong-
like transcripts, and we performed phylogenetic analyses
of both genomic DNA and c¢cDNA copies to establish
whether the detected transcripts are produced by several
or only few transposase lineages. We found that PIF-like
transposases are actively transcribed in Triticeae and
that most, if not all, transposase lineages that we previ-
ously identified are transcriptionally competent [45]. In
contrast to our evidence of PIF transcription, we did not
detect any transcriptional activity of Pong elements in
any sample.

Methods

Plant material

Fifteen accessions of 13 species representing 11 Triticeae
genera were used to survey for the presence of PIF and
Pong-like related transcripts (Table 1). To avoid the
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Table 1 List of Triticeae taxa included in PIF transcriptional analyses. Samples are represented with their names and collection

numbers

Species name

genomic PIF?

Sample source and reference number

cDNA PIF

Sample source and reference number

Aegilops comosa Sibth. & Smith

Agropyron cristatum (L) Gaertn.
Australopyrum velutinum (Nees) B.K.Simon
Crithopsis delileana (Schult) Roshev.
Dasypyrum villosum (L) P.Candargy
Eremopyrum bonaepartis (Spreng.) Nevski
Henrardia persica (Boiss.) CEHubb
Heteranthelium piliferum (Banks & Sol.) Hochst.
Hordeum bogdanii Wilensky (1)

Hordeum bogdanii Wilensky (2)

Hordeum chilense Roem. & Schult.

Peridictyon sanctum (Janka) Seberg, Fred., & Baden
Psathyrostachys fragilis (Boiss.) Nevski
Psathyrostachys juncea (Fisch.) Nevski
Pseudoroegneria libanotica (Hack) D.R.Dewey
Pseudoroegneria spicata (Pursh) ALove
Pseudoroegneria tauri (Boiss. & Balansa) ALéve
Secale montanum Guss.

Taeniatherum caput-medusae (L) Nevski (1)
Taeniatherum caput-medusae (L.) Nevski (2)
Thinopyrum bessarabicum (Savul. & Rayss) ALéve
Triticum monococcum L.

Triticum urartu Tumanian ex Gandilyan

USDA/G602
USDA/PI 279802

USDA/D 2873-2878

USDA/H 5562
USDA/D 2990
USDA/PI 227344
USDA/H 5556
USDA/PI 402352

USDA/PI 531762
USDA/PI 531781
USDA/KJ 248
USDA/PI 343192
USDA/PI 206684
USDA/PI 228391
USDA/D 2844
USDA/PI 401319
USDA/T 36554
USDA/PI 208075
USDA/PI 283240
USDA/PI 531711
USDA/PI 221413

Morrison s.n.

USDA/PI 542175
USDA/PI 439925

USDA/H 5562

USDA/PI 219970

USDA/PI 531760
USDA/PI 531762

USDA/PI 272136
USDA/PI 228389
USDA/PI 236672

USDA/T 36554
USDA/PI 222048
USDA/PI 220591
USDA/PI 531711
USDA/PI 10474

Morrison s.n.

2Genomic PIF sequences are from [45]

potentially confounding phylogenetic effects of auto-
and allopolyploidy, only diploid taxa were chosen for
this study. Seeds were obtained from the USDA and
have associated chromosome counts. All plants were
grown at the University of Illinois at Chicago greenhouse
under common conditions. The PIF ¢cDNA sequences
were analyzed alone (Fig. 2) and in combination with
two hundred and forty genomic PIF ORF2 sequences
from 22 diploid Triticeae samples [[45]; Table 1] (Fig. 3).

DNA, RNA extractions and cDNA synthesis

The DNA was extracted for previous phylogenetic stud-
ies from fresh or dried leaf material, using a CTAB-
based method [48]. RNA was extracted from fresh leaf
material harvested from reproductively mature plants
(Table 1). Plant tissue was snap-frozen in liquid nitrogen
and total RNA was extracted using a commercial extrac-
tion kit (Promega), following the manufacturer’s instruc-
tions. Crude total RNA preparations were treated with
TURBO DNA-free™ (Ambion) to remove residual DNA.
RNA quality was inferred by running 5 ul on an agarose

gel, and RNA concentrations were estimated using a
NanoDrop Spectrophotometer (Thermo Fisher Scientific
Inc., MA, USA). Prior to cDNA synthesis, the presence/
absence of genomic DNA contamination was tested for
all RNA preparations using PCR reactions with PIF and
Pong primers known to work on genomic DNA, and an
RT- control supplied with the cDNA synthesis kit.
¢DNA was generated from DNA-free total RNA using
the Protoscript RT-PCR kit (NEB) using 2 pl of random
and oligo-dT primers and following the manufacturer’s
protocol. The cDNAs were used as templates in amplifi-
cation reactions as described below.

Amplification of the PIF ORF2 conserved domain

Triticeae-specific degenerate primers (cPIF-for: GGAGC
HWTNGATGGYACWCAC, cPIF-rev: AAGGTTGAAY
AGCTCCYT) targeting a conserved portion of the PIF
transposase were used for all PCR amplifications (Fig. 1b).
These primers are anchored in two highly conserved
amino acid residue motifs (GAMDGTH and RELFNL re-
spectively) of the transposase gene, surrounding the “DD”
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Fig. 2 100-replicate ML bootstrap analysis of 156 PIF-like cDNA transposase sequences from Triticeae under the GTR+I+| model of evolution.
Colored clades represent clades with bootstrap support above 80%. Bootstrap values of main clades are displayed with numbers. Red rectangles
indicate identical sequences from distinct genera. Taxon labels combine the first four letters of the genus and species names. Numbers following
taxon names distinguish cloned sequences from within individuals and are consistent among Figs. 2 and 3. S designates short sequences without

the intron; L designates long sequences with the intron

portion of the “DDE” motif. The predicted TPases
encoded by plant PIF transposons vary in length from 392
to 432 amino acids [42]; the amplified portion represents
between 120 and 147 amino acids. The position of the
“DD” transposase fragment was predicted by comparison
of a reduced set of aligned Triticeae sequences to the cor-
responding portion of the “DDE” motif from a Zea mays
PIF element (AY362811; Fig. 1b). All amplifications were
carried out in a 10 pl reactions containing 50 ng of cDNA,
10x PCR buffer, 0.1 mmol/L of each primer, 0.5 units of
Taq polymerase (Sigma), 0.2 mmol/L of each dNTP, and

1.5 mmol/L MgCl,. The PCR amplification conditions
were: 5 min of DNA denaturation at 95 °C, followed by
35 cycles of 30 s at 95 °C, 45 s at 57 °C and 60 s at 72 °C
for each cycle. The last cycle was followed by a 10 min
final extension at 72 °C.

Amplification of the Pong ORF2 conserved domain

Degenerate primers (Pong-for: GGCWCCATYGAYTG-
TATGCAC, Pong-rev: YTCGTCYTCVACYAT-
CATRTTGTG; [37]) were used for cDNA amplification
of approximately one-third or 520 bp of conserved
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GTRATHI

the intron; L designates long sequences with the retained intron

Fig. 3 100-replicate ML bootstrap analysis of 156 PIF-like cDNA transposase sequences (c-pink) and 240 genomic (g-blue) PIF transposase fragments
under the GTR++I model of evolution. Colored clades represent clades with bootstrap support above 80%. Bootstrap values of main clades are
displayed with numbers. Pink rectangles indicate identical cONA sequences; blue rectangles indicate identical genomic DNA sequences; green
rectangles indicate identical cONA and genomic DNA sequences. Taxon labels combine the first four letters of the genus and species names. Numbers
following names distinguish cloned sequences from within individuals and are consistent among Figs. 2 and 3. S designates short sequences without

region of the Pong transposase domain, including the
“DDE” motif. These primers are anchored in two highly
conserved amino acid residue blocks (GTIDCMH and
NMIVEDE) of the transposase gene (Fig. 1c) and were
previously shown to work on genomic DNA [37, 46]. All
amplifications were carried out as described in [46].

Cloning, sequencing and sequence alignment

PCR products were cloned prior to sequencing, and
multiple clones from each species were sequenced to
evaluate intra-individual transposase diversity. Three
PCR reactions were run for each cloning reaction to
counter the potential effects of PCR drift [49]. PCR
products from replicated reactions were isolated on 1%
agarose gels, combined and purified on columns (Qia-
gen). Cleaned products were cloned into pGEM-T Easy
vectors (Promega) and transformed into E.coli JM109
competent cells (Promega) according to the manufacturer’s

instructions, except that all reactions were halved. Positive
(white) colonies containing the insert were PCR amplified
as described above. The resulting fragments were cleaned
with 0.2 pl exonuclease and 0.4 pl shrimp alkaline phos-
phatase, and sequenced in both directions with the PCR
primers. Sequencing was performed on an ABI 377 auto-
mated sequencer (Applied Biosystems). The nucleotide
and inferred amino acid sequences of PIF-like transposases
were aligned using CLUSTALW [50] with default pa-
rameters, and then manually adjusted in MacClade
4.08 (Maddison and Maddison). All alignments are
available upon request.

Phylogenetic analysis

Phylogenies were estimated using maximum parsimony
(MP) and maximum likelihood (ML). Parsimony ana-
lyses and pairwise sequence distances were estimated
with PAUP* v.4.0b10 [51]. The parsimony bootstrap
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method, with 1000 replicates with heuristic search, was
used to estimate the robustness of the clades [52] (tree
not shown). For the ML analysis, the appropriate model of
sequence evolution was determined by jModelTest [53—
55] and the corrected Akaike information criterion [56].
The selected models of evolution were implemented in
the Mac OS X version of GARLI v.0.95 [57] for analysis.
Following the recommendations of the author, multiple
(50) analyses with random starting tree topologies were
performed for each data set. Runs were set for an unlim-
ited number of generations, and automatic termination
following 10,000 generations without a significant change
in topology. Bootstrap support for each tree was estimated
based on 100 ML bootstrap replicates with the same op-
tions used to generate the ML tree. All sequences were de-
posited in the NCBI GenBank database (accession
numbers MF281799-MF281954).

Results

Isolation and characterization of PIF cDNAs

We isolated, cloned, and sequenced 156 unique cDNA
fragments from the conserved transposase domain of PIF-
like TEs in 15 diploid Triticeae samples. As in our previous
analysis of genomic PIF sequences, all fragments corre-
sponded to the “DD” portion of the “DDE” transposase
motif (Fig. 1b) [45]. PCR amplifications yielded two bands
of approximately 360 and 440 bp, labeled “S” (short) and
“L” (long) in the PIF phylogenies (Figs. 2 and 3), for all sam-
ples except Eremopyrum bonaepartis, Triticum monococ-
cum, and Agropyrum cristatum, in which only the longer
fragments were detected. The 156 ¢cDNA sequences re-
vealed that the length difference between long and short
fragments is explained by the retention of an intron during
transcription by 112 PIF transposase fragments, ranging in
size from 72 to 88 bp. The intron was located six residues
upstream of the second D (Fig. 1b), and contained a stop
codon in 85 of the sequences. Approximately 30 of the 156
products contained additional deletions and insertions of
one or a few bases; thus, some apparently non-functional
gene copies are being transcribed. Sequences showed
58.65—-100% nucleotide identity, with the highest level of di-
vergence (41.35%) found between E. bonaepartis 14L and
Psathyrostachys juncea 8L. Identical ORF cDNA fragments
were detected in different samples in four cases (marked
with rectangles on Fig. 2): Pseudoroegneria libanotica 14L
and Taeniatherum caput-medusael 6L; P. libanotica 4L
and Hordeum bogdanii2 17L; T. urartu 5S and T. caput-
medusae2 2S; and T. caput-medusae2 17S, T. caput-
medusael 5S, and Crithopsis delileana 5S.

Triticeae contain transcriptionally active PIF, but not Pong
elements

Our results show that PIF is actively transcribed in all
samples. We did not detect any transcriptional activity
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for the closely related Pong elements, even though a pre-
vious study of Pong genomic sequences [46] showed that
Pong sequences are, like PIF, widely dispersed within
Triticeae, with multiple distinct and genetically diverse
transposases coexisting within individual genomes. We
do not think the lack of transcripts can be explained as a
technical artifact due to poor amplification, because the
amplification primers used here are the same ones used
to successfully amplify a wide diversity of genomic Pong
sequences from the same Triticeae species [46]. The
Pong results not only further highlight a difference in
transcriptional activity between these otherwise very
similar groups of elements, but they also served a
practical purpose, as an additional control confirming
the absence of genomic DNA contamination in all RNA
preparations.

Phylogenetic analysis

All phylogenetic analyses of the Triticeae PIF-like
c¢DNAs were performed on a region of approximately
360 bp coding sequence; the intron was excluded be-
cause of alignment ambiguities. Maximum parsimony
topologies (not shown) were in general accordance with
the ML topologies, but there was more resolution and
support in the ML trees. Given the difficulties of finding
an outgroup while providing clarification of phylogenetic
relationships between TEs, we used the mid-point root-
ing method [58] for all of the phylogenetic trees. Al-
though PIF sequences from grass genera outside the
wheat tribe are available, they are not appropriate as out-
groups for the Triticeae elements because the PIF-like
lineages within Triticeae appear to predate the tribe’s
origin [i.e., some PIF elements from within the Triticeae
are more closely related to grass elements from outside
of the tribe than they are to other elements from within
the tribe [[45]; see also [38, 42]].

Phylogeny of PIF cDNA transcripts in Triticeae

This data set included all 156 cDNA fragments from all
15 accessions. (A phylogeny of 44 cDNA PIF transcripts
with no intron is presented as an Additional file 1). The
best topology (-InL = 5,169.16730; Fig. 2) revealed three
main groups of PIF cDNAs in Triticeae (I-III in Fig. 2).
Psathyrostachys juncea 2L was sister (69% bootstrap
support) to group I (100% bootstrap), which was the lar-
gest and the most complex group, and was further sub-
divided into two weakly supported subgroups. Group I
contained sequences from all samples except E. bonae-
partis. Within this group, P. libanotica 14L was identical
to T. caput-medusael 6L (indicated with rectangles on
Fig. 2). Group II (weakly supported) was represented by
sequences from all samples except H. bogdaniil and T.
monococcum. Within this group, three sets of sequences
were identical: H. bogdanii2 17L and P. libanotica 4L; T.
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caput-medusae2 2S and T.urartu 5S; and C. delileana
5S, T. caput-medusae2 17S, and T. caput-medusael 5S
(indicated with rectangles on Fig. 2). Aegilops comosa 9S
was sister to group II with bootstrap of 64%. Group III
(100% bootstrap support) only included sequences from
C. delileana, P. libanotica, and P. juncea. The small size
of this group points to a combination of differences in
element transcriptional activity, the loss of some lineages
through stochastic events and natural selection, and/or
random sampling artifacts. Crithopsis delileana and P.
libanotica exhibited very broad distribution, with cDNA
sequences in all of the main evolutionary lineages
identified.

Phylogeny of genomic and cDNA PIF transposase fragments
This analysis included 156 ¢cDNAs generated for this
study along with 240 genomic PIF sequences from a pre-
vious phylogenetic study of PIF sequences in Triticeae
[45] (Fig. 3). Of the 240 genomic sequences, 113 had fra-
meshifting indels or stop codons, and thus are probably
not functional. The best topology (-InL = 11,008.92254;
Fig. 3) revealed multiple distinct transposase cDNA frag-
ments grouped with genomic sequences in well-defined
and generally well-supported clades (Fig. 3). The wide
distribution of ¢cDNA sequences among the genomic
sequences showed that they are derived from multiple
evolutionary lineages, indicating that distinct transpo-
sases have retained transcriptional competence during
the evolution of the tribe and have the potential to func-
tion simultaneously within a genome (Fig. 3).

Eight cDNAs were identical to genomic PIF fragments
(indicated with green rectangles in Fig. 3), suggesting
that they originated from identical or nearly identical
transposase fragments (although only half of them are
paired with genomic copies from the same species). Of
these eight transcripts, seven were derived from transpo-
sases with no frameshifting indels or stop codons. The
eighth, cH. bogdanii2 7L, is characterized by four single
base pair deletions, resulting in a change of the reading
frame, thus demonstrating that transcriptional activity
does not necessarily indicate functional activity. Two
pairs of genomic transposase sequences were identical
(marked with pale blue rectangles on Fig. 3): gThino-
pyrum bessarabicum 8 and gP.libanotica 14; and gH.
bogdanii 15 and gT. urartu 23.

Discussion

Transcription is the first of several steps required for TE
transposition [59]. Autonomous elements (i.e. elements
that encode all functional products required for trans-
position) have the potential to self-activate or regulate
the activity of related non-autonomous versions, which
are ubiquitous in grass genomes [11]. To ensure the via-
bility of their host, and therefore their own survival,
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optimized transmission and restricted transpositional activ-
ity are the hallmark of many TE families. Once integrated
in the host genome, TEs rapidly accumulate small inser-
tions, deletions, and rearrangements that alter their struc-
tural integrity and render them inactive [23, 25, 26]. Plant
cells have also developed a variety of transcriptional and
post-transcriptional regulatory mechanisms to protect their
genomes against TE movement, including silencing by in-
creased DNA methylation of promoter regions, histone
modifications, or small RNA interference [19, 60—62].

Transcriptional activity of PIF and Pong-like TEs in
Triticeae

Our work on the evolutionary dynamics of PIF and Pong
transposase activity in Triticeae had two major goals.
The first was to determine whether PIF and Pong are
transcriptionally active in Triticeae, and the second was
to assess the diversity of transcribed transposase line-
ages. We found that PIF-like transcripts are present
throughout the Triticeae, indicating that they have
remained transcriptionally active throughout of the long
history of the tribe (13—-25 mya; [63]). Phylogenetic ana-
lysis of both genomic DNA and ¢cDNA revealed that the
detected PIF transcripts belong to distinct clades, and
that most, if not all transposase lineages have remained
transcriptionally competent. In contrast, we did not de-
tect any transcriptional activity of Pong elements in any
sample, in spite of previous work [46] showing that the
diversity of Pong elements in Triticeae genomes is com-
parable to that of PIF elements in the same species, with
multiple distinct lineages coexisting within a single gen-
ome. Although this work is focused on TE transcrip-
tional activity in mature leaf material only, the lack of
Pong activity in the wheat tribe also contrasts with ob-
servations from other plant species; Pong elements have
undergone recent amplification in Arabidopsis and Brassica
[36], and are transcriptionally active in rice [30, 64—66].
One plausible explanation for the lack of Pong-related tran-
scription within Triticeae genomes could be the failure of a
related or unrelated TE, transposase gene, or mechanism to
activate the transcription machinery of Pong elements in a
common ancestor of Triticeae. It is highly unlikely that in-
dividual Pong copies have been transcriptionally inactivated
separately due to natural selection and/or genetic drift.
Based on our previous analyses of Pong elements within
Triticeae genomes, their expansion seems to be recent [46],
thus it is possible that the element is still active but another
mechanism has failed to instigate its transcription and
therefore activity.

Phylogeny of PIF cDNA transcripts

Genome-wide studies of transcriptional activity of 56
maize TE families, the PIF family included, have dem-
onstrated that TE Expressed Sequence Tags (ESTs)
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are located only in a few clades of genomic se-
quences, indicating that few evolutionary branches of
the TEs are transcriptionally active [67]. However, in
contrast to these findings, our results revealed that
the majority of PIF lineages have retained transcrip-
tional capacity.

The wide distribution of distinct taxa in groups I and
IT in Fig. 2 suggests that diverse ancestral lineages were
vertically transmitted and have remained transcription-
ally active during the evolution of the tribe (13-25 mya;
[63]). Elements from groups I and II are missing from
only a few individuals; this could be attributed either to
loss from those genomes or to a sampling artifact.
Group III (Fig. 2) is represented in far fewer individuals,
which may be due to differential evolutionary success of
this transposase lineage due to selection, and/or to sto-
chastic losses. However, the presence of these transcripts
in species derived from basal branches of the wheat tribe
such as Psathyrostachys [68, 69] indicates this lineage
was already present at the beginning of Triticeae radi-
ation, and later lost from some of the descendants.

The presence of identical PIF transposase fragments
shared across species boundaries suggests that recent or
ongoing occasional horizontal transfer (HT) events have
played a significant role in the complex distribution of
PIF elements in Triticeae. This was also supported by
our previous analysis of PIF dynamics in Triticeae
[45], in which we identified two pairs of genomic PIF
transposase gene fragments that exhibited extremely
high nucleotide sequence identities (marked with pale
blue rectangles on Fig. 3). Triticeae genera diverged
13-25 mya [63], and it is highly unlikely that their
transposase sequences diverged at the same time as
the hosts and maintained such high sequence similar-
ity, even if they are under selective constraints [45].
Here, the identification of identical pairs of cDNA
and genomic transposase fragments provides further
evidence that HT plays a role in the distribution of
PIF elements among genera.

Conclusion

PIF and Pong-like elements are widely dispersed within
the genomes of diploid Triticeae species. However, both
TE families display unique features and vary consider-
ably in their transposase transcriptional activity. No
Pong-related transcripts were detected, while an abun-
dance of diverse PIF-related transcripts were identified
in all samples, indicating wide variations in the activity
of closely related transposon families within the same
genome. Multiple distinct transcriptionally competent
PIF transposase clades were discovered, revealing that
transcription of PIF elements in Triticeae is not re-
stricted to few evolutionary lineages.
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Additional file

Additional file 1: 1000-replicate ML bootstrap analysis of 44 PIF-like
cDNA transposase sequences with no intron from Triticeae (only
bootstrap values above 50% are shown). Red rectangles indicate identical
sequences from distinct genera. Numbers following taxon names
distinguish individuals within species and numbers in parentheses
distinguish cloned sequences from within individuals. (EPS 1457 kb)
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