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Abstract

Background: Homoplasy affects demographic inference estimates. This effect has been recognized and corrective
methods have been developed. However, no studies so far have defined what homoplasy metrics best describe the
effects on demographic inference, or have attempted to estimate such metrics in real data. Here we study how
homoplasy in chloroplast microsatellites (cpSSR) affects inference of population expansion time. cpSSRs are popular
markers for inferring historical demography in plants due to their high mutation rate and limited recombination.

Results: In cpSSRs, homoplasy is usually quantified as the probability that two markers or haplotypes that are
identical by state are not identical by descent (Homoplasy index, P). Here we propose a new measure of multi-locus
homoplasy in linked SSR called Distance Homoplasy (DH), which measures the proportion of pairwise differences
not observed due to homoplasy, and we compare it to P and its per cpSSR locus average, which we call Mean
Size Homoplasy (MSH). We use simulations and analytical derivations to show that, out of the three homoplasy
metrics analyzed, MSH and DH are more correlated to changes in the population expansion time and to the
underestimation of that demographic parameter using cpSSR. We perform simulations to show that Approximate
Bayesian Computation (ABC) can be used to obtain reasonable estimates of MSH and DH. Finally, we use ABC to
estimate the expansion time, MSH and DH from a chloroplast SSR dataset in Pinus caribaea. To our knowledge, this
is the first time that homoplasy has been estimated in population genetic data.

Conclusions: We show that MSH and DH should be used to quantify how homoplasy affects estimates of
population expansion time. We also demonstrate how ABC provides a methodology to estimate homoplasy in
population genetic data.
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Background
The study of historical demography is important for
understanding the ecology and evolution of species. In
particular, timing population size changes allows the
discussion of past population patterns in the context of
historical geological events such as island formation [1]
and climate change [2]. One popular source of informa-
tion to infer past population dynamics is the genea-
logical signal contained in linked polymorphic markers
[3, 4], such as chloroplast microsatellites (cpSSRs). As
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highlighted in recent reviews [5, 6], cpSSRs are widely used
in plant studies. cpSSRs remain popular despite the ascent
of genome wide sequencing tools such as Restriction site-
associated DNA sequencing (RADseq) [7], Genotyping-by-
sequencing (GBS) [8] and targeted sequencing [9] due to
two appealing properties: 1) their high mutation rate, ran-
ging from 10−6 to 10−2 mutations per locus per generation
[10], and 2) they can be applied in plant non-model species
where few genomic resources have been developed [11].
High mutation rates combined with an approximately

step-wise transition between allelic states make cpSSRs
prone to homoplasious mutations. Homoplasy takes
place in a cpSSR locus when different alleles at the locus
are identical by state but are not identical by descent
[12]. Two cpSSRs copies of a locus are defined to be
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identical by state when they have the same size and are
defined as identical by descent when there has not been
a mutation since their divergence from a common an-
cestor. Previous studies have quantified the fraction of
the homoplasy, called Molecularly accessible size homo-
plasy (MASH) [12–14] by measuring the differences in
the DNA sequence of SSRs of identical size. Although
that approach can reveal a fraction of the homoplasy in
SSRs, it ignores the homoplastic events due to polymor-
phisms that lead to DNA sequences identical by state
but not identical by descent. Therefore, MASH does not
provide a direct estimate of homoplasy.
The occurrence of homoplasy is an important limita-

tion of cpSSR based demographic inference in scenarios
of population expansions, causing decreased ability to
detect population growth [15] and to systematic under-
estimation of the expansion time [16]. Although some
pseudo-likelihood and Bayesian methods of demographic
inference [16, 17] successfully correct for homoplasy,
they provide little insight into the relationship between
homoplasy and the estimation of demographic parame-
ters, nor do they provide estimates of homoplasy itself.
In fact, to our knowledge, no formal analysis of the
quantitative relation between homoplasy and the under-
estimation of the expansion time exists to date. Part of
the reason is that the concept of homoplasy was
developed to describe the proportion of haplotypes or
markers that are identical by descent compared to those
that are identical by state, while the problem of errone-
ous demographic inference is linked to an underestima-
tion of the number of mutations between lineages. To
illustrate this, the most common measure of homoplasy,
the homoplasy index P [12], describes the probability
that two cpSSR identical by state are not identical by
descent. In the case of haplotypes composed of linked
cpSSR, P has been defined as the probability that two
haplotypes identical by state are not identical by descent
and is dependent on the multi-locus heterozygosity [15].
This is the definition of P we will employ here. While
simulation studies show that higher values of P are asso-
ciated with an underestimation of the expansion time
[15], other studies have found that multi-locus heterozy-
gosity is not particularly sensitive to homoplasy [18],
suggesting that P may not be the most appropriate
measure for describing effects on demographic infer-
ence. This motivates the necessity to propose alternative
measures of homoplasy that are more directly relevant
to demographic inference and that would allow for
meaningful quantifications of the effects of homopla-
sious mutations on the estimation of the expansion time.
In this paper, we propose a new homoplasy metric.

We analyze the relationship between three homoplasy
metrics, including our proposed metric, and the under-
estimation of the expansion time. Second, we evaluate
the extent to which these homoplasy metrics can be esti-
mated from simulated cpSSR data using Approximate
Bayesian Computation (ABC). Finally, we quantify the
level of homoplasy in a real dataset from Pinus caribaea,
providing an empirical estimate of homoplasy from
population genetic data.

Methods
Dataset simulations under a stepwise demographic
expansion model
Throughout this study we assume a stepwise demographic
expansion model [3]. The model consists on three param-
eters: θ0 = 2LN0u, θ1 = 2LN1u and τ = 2Ltu, where u is the
mutation rate per generation at each linked SSR, N0 and
N1 are the effective population sizes before and after the
expansion, L is the number of linked SSR loci and t is the
time in generations since the expansion.
We generated two sets of haplotypes, hISM and hSMM,

in the coalescent simulations under the stepwise demo-
graphic expansion model used in this study. We used the
same genealogy along with the set of mutations falling in
each branch of the genealogy to generate hISM and
hSMM from each coalescent simulation. hISM represents
a set of linked multi-locus SSR haplotypes evolving under
the infinite sites model, ISM [19] while hSMM are a set of
linked multi-locus SSR haplotypes that evolved under the
symmetrical stepwise mutation model, SMM [20]. The
haplotypes hISM are free of homoplasy while the haplo-
types hSMM can contain homoplasious mutations. These
coalescent simulations were performed using a modified a
version of the coalescent simulator msHOT [21, 22]. The
modified version of msHOT is available at https://github.
com/dortegadelv/HomoplasyMetrics.

Measures of homoplasy
We studied the relationship between homoplasy and the
underestimation of the population expansion time τ
using three different measures.
The first metric is the commonly used homoplasy

index (P) [12] as used by [15]:

P ¼ 1−
1−HISM

1−HSMM
¼ 1−

FISM

FSMM
ð1Þ

Where HISMand HSMM are the expected heterozygosities
[23] per haplotype estimated in a set of haplotypes con-
taining L linked loci evolving under the infinite sites
model (hISM) and the stepwise mutation model (hSMM),
respectively. FISM and FSMM are the expected homozygos-
ities in the set of haplotypes hISM and hSMM. Note that
FSMM is directly observable from the data, while FISM is
not, in real data of a set of haplotypes hSMM.

https://github.com/dortegadelv/HomoplasyMetrics
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We also use the per SSR locus average of P, which we
call Mean Size Homoplasy (MSH). It estimates the mean
reduction in heterozygosity per SSR locus. This can be
interpreted as the mean homoplasy index P per individ-
ual loci. It can be expressed as:

MSH ¼ 1−

PL
i¼1

1−Hi
ISM

1−Hi
SMM

L
¼ 1−

PL
i¼1

Fi
ISM

Fi
SMM

L
ð2Þ

Where L is the number of SSR in the haplotype. Hi
ISM

and Hi
SMM are the expected heterozygosities at the i

locus in hISM and hSMM, respectively. Fi
ISM and Fi

SMM

are the expected homozygosities at the i locus in hISM
and hSMM.
Inference of demographic growth using haplotypes

with linked microsatellites is typically based on the dis-
tribution of pairwise differences between multi-locus
haplotypes, also known as the mismatch distribution, as
the shape of this distribution is determined by the time
and magnitude of historical population expansions [4].
Based on this, here we present a new metric, distance
homoplasy (DH), which quantifies the proportion of mu-
tations separating two multi-locus haplotypes that are
not observed due to homoplasy. Our rationale for using
this measure are studies that use the mode of the distri-
bution of pairwise differences as the basis for estimating
τ [4]. Therefore, underestimation of the proportion of
pairwise differences should impact the mismatch distri-
bution which in turn should alter the inference of τ. DH
is expressed as:

DH ¼ πISM−πSMM

πISM
ð3Þ

Where πSMM and πISM are the mean number of differ-
ences between two haplotypes using the haplotypes
hSMM and hISM, respectively.

Expected values of π, Fi and F in a stepwise demographic
expansion model
We derived the expected values for the diversity statistics π,
Fi and F as a function of the mutation rate u of each linked
SSR, the number of linked simulated SSR’s L and the co-
alescent time Tij, in number of generations, between a pair
of haplotypes i and j present in the sample. We use the fol-
lowing equation E λ½ � ¼ E E λjTij

� �� � ¼ Pt
x¼1E λjTij ¼ x

� �
P

Tij ¼ x
� �

where λ stands for any diversity statistic and t is
the time in generations since the expansion. Tij is scaled in
units of N generations. We explain how to obtain the values
of E[λ|Tij] for every diversity statistic under the ISM and
SMM in the Appendix. The probability distribution of Tij
under a stepwise demographic expansion model is equal to:
P Tij ¼ x
� � ¼ 1

N

�
e−

x
=N

�
0≤x < t−1

1−
Xt−1

x¼1
P Tij ¼ x
� �

x ¼ t

,8>><
>>:

ð4Þ

Where N is the effective population time in the present.
The probability distribution of Tij is divided into two phases:
1) After the expansion, the population keeps a constant
population size and, therefore, P Tij ¼ x

� � ¼ 1
Ne−

x
N=

�
dur-

ing that period of time. 2) Before the expansion, all indi-
viduals must coalesce quickly at a time very close to the
expansion time Tij = t assuming that the population size is
very small. To model that effect, we assume that all indi-
viduals coalesce exactly at time Tij = t if they have not
already coalesced going forward in time.
The equations shown above to estimate the expected

value of the diversity statistics are used to obtain esti-
mates of the homoplasy parameters P, MSH and DH. As
an example, following equation (1) the expected value of
P can be calculated if we know the expected value of the
diversity statistics FISM and FSMM.

E P½ � ¼ 1−
E FISM½ �
E FSMM½ � ð5Þ

Where:

E FSMM½ � ¼
Xt

x¼1
E FSMMjTij ¼ x
� �

P Tij ¼ x
� � ð6Þ

E FISM½ � ¼
Xt

x¼1
E FISMjTij ¼ x
� �

P Tij ¼ x
� � ð7Þ

The same approach was also used to obtain the ex-
pected values of MSH and DH. The analytical equations
to calculate those expected values are explained in the
Appendix.

Simulations to analyze changes in homoplasy measures
We used a simulation framework to test the accuracy of
our estimates for the summary statistics π, F and Fi under
the ISM and the SMM along with our estimates for the
homoplasy values P, MSH and DH. We used our modified
version of the coalescent simulator msHOT [21, 22] to
generate two different sets of haplotypes (hSMM and
hISM) for each simulated genealogy. The modified version
of msHOT is available at https://github.com/dortegadelv/
HomoplasyMetrics.msHOT was used to make simulations
under the stepwise demographic expansion model, where
we used a value of θ1 = 30, θ0 = 0.03 and ten different
values of τ {1.5, 3, 4.5, 6, 7.5, 9, 10.5, 12, 13.5, 15}. For each
value of τ, we performed 100 simulations of 150

https://github.com/dortegadelv/HomoplasyMetrics
https://github.com/dortegadelv/HomoplasyMetrics
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haplotypes with 6 linked SSRs. The ten command lines
used for those simulations are shown in the Appendix
(Command Line 1).
We also did 100 simulations for 9 different numbers

of linked SSRs in the haplotype, going from L = 2 to
L = 10 to examine how changes in the value of L affect
P, MSH and DH. We simulated 150 haplotypes in each
simulation, where the values of the demographic param-
eters were set to θ1 = 5L, θ0 = 0.005L, τ = L = 2tuL, where
we kept the parameters t and u fixed to a certain value
such that 2tu = 1. Notice that the divergence time t is kept
fixed regardless of the number of linked SSRs L in these
simulations. The nine command lines used for these simu-
lations are shown in the Appendix (Command Line 2).

Underestimation of expansion time
We quantified the underestimation of expansion time
due to homoplasy using a metric called TS, which we
define as

TS ¼ dτISM− dτSMMdτISM ð8Þ

Values of the estimated expansion time τ for haplo-
types hISM and hSMM, dτISM and dτSMM respectively,
were obtained using the method by Schneider and
Excoffier (1999), implemented in the software Arlequin
[24]. This method infers the parameters θ0, θ1 and τ
based on the observed distribution of pairwise differ-
ences between haplotypes, also called mismatch distribu-
tion, and its expectation under a stepwise demographic
expansion model [25]. This approach assumes that there
is no homoplasy in the sample of haplotypes, therefore
any differences between dτISM and dτSMM are due to
homoplasious mutations present in hSMM. Following
[15], to use Arlequin for the hSMM analysis we coded
the SSRs as binary data, where the number of repeats
were coded with ‘1’ and shorter alleles were coded filling
the difference in repeats with ‘0’ .
We simulated 100 replicates of 150 haplotypes with 6

linked SSRs for each of 10 different values of τ {1.5, 3,
4.5, 6, 7.5, 9, 10.5, 12, 13.5, 15}. We set a value of θ1
equal to 30 and 60, which has the same order of magni-
tude of the value of θ1 estimated for the Pinus caribaea
dataset [26] employed in this study (see Pinus caribaea
dataset), and a value of θ0 which was 1000 smaller than
θ1 for all simulations. The command lines used for the
simulations are shown in the Appendix. Command Line 3
and 4 were used for the simulations done where θ1 = 30 and
θ1 = 60, respectively.
The value of each homoplasy measure and TS was

computed for each replicate of each simulation and the
relationship of each homoplasy measure with TS was
analyzed. In the simulations done with a value of θ1 = 30,
we removed 1 out of the 1000 simulations we performed
where that simulation was the only that had a TS value
smaller than -10 (see Additional file 1: Figure S1 for de-
tails on the removed simulation).

Estimation of homoplasy and expansion time using ABC
We used another modified version of the program
msHOT [21, 22], also available at https://github.com/
dortegadelv/HomoplasyMetrics, to implement an ABC
algorithm that estimates the posterior distribution of
demographic parameters θ0, θ1 and τ and the posterior
predictive distribution of the three measures of
homoplasy DH, MSH and P (see Appendix for details
about the implementation of the ABC algorithm). We
employed three summary statistics previously used [27]
to estimate demographic parameters in a model of popu-
lation growth: The mean of the variance in the size of
the SSRs across loci (V), the expected heterozygosity
averaged across loci (H) and the number of distinct haplo-
types (a). We used the mode of the posterior distribution
and posterior predictive distribution as point estimates of
the demographic parameters and homoplasy measures, re-
spectively (see Appendix and Additional file 1: Figure S2
for a discussion on why we employed the mode as a point
estimate). We also quantified the relative bias and
estimated the 50%, 75% and 90% coverage of the
demographic parameters and homoplasy measures to as-
certain the quality of the point estimates and the inferred
posterior distributions (see Appendix). The relative bias is
the average difference between the estimated and true
value of the parameter divided by its true value [28] . The
50%, 75% and 90% coverage are the proportion of times
that the true value is within the 50%, 75% and 90%
credible interval.
We compared the real value of the homoplasy mea-

sures P, MSH and DH against the estimated values of the
homoplasy measures using our ABC approach in 100
simulations of 150 haplotypes with 6 linked SSRs with
parameters θ1 = 30 and θ0 = 0.03 and 10 different values
of τ {1.5, 3, 4.5, 6, 7.5, 9, 10.5, 12, 13.5, 15}, where 10
simulations were done for each τ value. The ten com-
mand lines used for the simulations are shown in the
Appendix (Command Line 5). We also estimated the
three homoplasy measures in the simulations we explain
in the next paragraph.
We compared the performance of three different

methods to infer τ and θ1 in three different sets of 100 sim-
ulations of 150 haplotypes with 6 linked SSRs done using
three different τ values {3,6,9}, a θ1 = 30 and a θ0 = 0.03.
The three command lines for these simulations are shown
in the Appendix (Command Line 6). One of the three
methods we used to estimate τ and θ1 is our ABC
approach, and the other two methods use the mismatch

https://github.com/dortegadelv/HomoplasyMetrics
https://github.com/dortegadelv/HomoplasyMetrics
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distribution to estimate those demographic parameters: 1)
One of those methods is the approach taken by [3] as
implemented in the software Arlequin [24], which as-
sumes that there is no homoplasy in the data (Least
Squares approach without taking Homoplasy into ac-
count, LSWH). 2) The other method we used is a
maximum-pseudolikelihood estimator that uses a
model where it is assumed that homoplasy can occur in
the data [16] (Maximum Pseudolikelihood using a
model with Homoplasy, MPH). Code for that method
was kindly provided by Miguel Navascués.
Estimation of homoplasy and population expansion times
in a Pinus caribaea dataset
We used a dataset of 7 SSR loci from 88 individuals of
the species Pinus caribaea to estimate τ along with the
homoplasy measures MSH and DH. This dataset is a
subset of the data previously published in [26], where
an analysis of population structure from four species
of Pinus subsection Australes, including Pinus cari-
baea, identified four different groups (groups I-IV).
We took the group containing the largest number of
individuals distributed in Central America (group II),
and retained only the individuals sampled from Central
America in that group (88 out of 93 individuals) for
our analysis. A hypothesis of population expansion
could not be rejected using information from the mis-
match distribution in group II [26], making this group
suitable for analysis of expansion. We used ABC,
LSWH and MPH to estimate τ in that dataset. The esti-
mations of τ̂ in the three methods used above were
later transformed to years using a mutation rate of
5.5 X 10−5 per SSR per generation [29] and a gener-
ation time of 42.5 years [26].
We also report the 95% confidence interval of the esti-

mation of τ̂ with LSWH, MPH and ABC using a para-
metric bootstrap approach as in Arlequin [24]. We
report the 95% confidence intervals for the ABC method
instead of the 95% credible intervals to compare the 95%
confidence intervals created with ABC with those
obtained using LSWH and MPH. For each particular
inference method (LSWH, MPH or ABC), the approach
involves the simulation of 1000 datasets of 88 individuals
with 7 SSR using the demographic parameters estimated
for the Pinus caribaea data using a particular inference
method. The value of the parameter τ· from each of the
1000 datasets was estimated using the inference method
under study. Then, for a confidence level of α = 0.05, the
approximate limits of the confidence interval were
defined as the α/2 and 1 – α/2 percentile values of the
1000 values of τ·. This parametric bootstrap approach
was also used to estimate the 95% confidence interval of
MSH and DH using the ABC method and 1000
simulations done using the demographic parameters in-
ferred by ABC.
Results
Response of different measures of homoplasy to
differences in expansion time
First we evaluated the response in the three different mea-
sures of homoplasy and their components, π, Fi and F, to
changes in expansion time under the demographic step-
wise expansion model in haplotypes containing completely
linked SSRs. We thereby corroborate our theoretical expec-
tations for the different metrics and found that our simula-
tions validate their predictions (Fig. 1a-d).
As can be seen in Fig. 1a-b, the accumulation of homo-

plasious mutations causes a monotonic increase in the dif-
ference between Fi

ISM and Fi
SMM and between πSMM and

πISM with the expansion time, something that is not ob-
served for the difference between the two measures of
haplotype homozygosity FISM and FSMM (Fig. 1c). This
translates to both MSH and DH increasing steadily with
expansion time, while P has a parabolic relationship (Fig.
1d) and stays at a constant value close to 0.09 when τ is
equal or larger than 8 (Fig. 1d). Therefore, the values of P
do not seem likely to relate to underestimation of popula-
tion expansion time, in contrast with MSH and DH. Add-
itionally, we found that the number of linked SSRs in the
haplotype does not influence the values of MSH and DH,
but it does change the value of P given a fixed divergence
time t (Additional file 1: Figure S3).
The relation between different measures of homoplasy
and underestimation of τ
Simulations of demographic expansion under different
values of τ reveal that the standard homoplasy index P is
not strongly correlated with TS, which measures the
underestimation of τ due to homoplasy (Fig. 2a, Pearson’s
ρ = −0.1282, p-value = 4.8*10−5). Contrarily, MSH and
DH,have a stronger correlation with an underestimation of
τ, where MSH has a slightly lower correlation with TS
(Fig. 2b, ρ = 0.6903, p-value <2.2*10−16) than DH, which
has the strongest correlation with TS of all the homoplasy
measures inspected (Fig. 2c, ρ = 0.6989, p-value <2.2*10−16).
Correlation between the latter two measures was strong
(0.9208), whereas neither of them was strongly correlated
with P (ρ between MSH and P = −0.2685; ρ between
DH and P = −0.0977). Simulations with a higher value
of θ1 = 60 (Additional file 1: Figure S4), produced a
nearly identical relationship between DH, MSH and
TS (ρ between P and TS = −0.2617; ρ between MSH
and TS = 0.8673; ρ between DH and TS = 0.8777),
showing that DH and MSH are robust predictors of
an underestimation of τ while P is not.



2 4 6 8 10 12 14

0
5

10
15

a b

c d

Mutation model

ISM
SMM

2 4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F
i

Mutation model

ISM
SMM

2 4 6 8 10 12 14

0.
00

0.
10

0.
20

0.
30

F

Mutation model

ISM
SMM

2 4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

H
om

op
la

sy

P
MSH
DH

Fig. 1 Homoplasy values in the stepwise demographic expansion model for different values of the expansion time parameter τ. The points in
each plot are the average values for each statistic across 100 simulations for plots (a-c), those average values were used to calculate the mean
values of the homoplasy index (P), mean size homoplasy (MSH) and distance homoplasy (DH) that are plotted as points in (d). The dashed lines
are the approximated expected values estimated from our derivations. a πISM and πSMM; b FiISM and FiSMM ; c FISM and FSMM d P, MSH and DH

Ortega-Del Vecchyo et al. BMC Evolutionary Biology  (2017) 17:213 Page 6 of 14
ABC estimates of homoplasy and expansion time
We used simulated data to evaluate the estimation of ho-
moplasy metrics on an ABC framework. We performed
linear regressions of the estimated values of the homo-
plasy measures obtained by our ABC approach on their
true homoplasy values (Fig. 3) We also measured the rela-
tive bias and the correlation between the estimated and
true values of the homoplasy measures. On simulations
done over a range of τ values, we found that our estimates
of MSH and DH were highly correlated with their real
values (r = 0.881 and r = 0.740, respectively) and their
relative bias was small (relative bias = −0.040 and 0.030,
respectively), indicating that MSH and DH values are well
estimated by our ABC approach. On the other hand, the
estimates of P had a smaller correlation with their true
values (r = 0.486) and their relative bias is −0.132, indicat-
ing that our ABC approach underestimates P values by ap-
proximately 13.2%. The underestimation can also be seen
in Fig. 3. Despite differences in the quality of the point es-
timates of P, MSH and DH, we found that the 50%, 75%
and 95% coverage of the homoplasy measures indicate
that the inferred posterior distribution of those measures
are well estimated (Additional file 1: Table S1 and
Appendix).
We performed more simulations to analyze the per-
formance of the ABC approach on simulations done
using the same demographic parameters. We evaluated
this by creating three sets of simulations done over a
single value of τ (τ = 3, 6 or 9). We found that the 50%,
75% and 90% coverage indicate that the posterior
distributions of the homoplasy measures are correctly
inferred (Additional file 1: Table S2 and Appendix).
Second, we found that the average relative bias was
small for all homoplasy measures (relative bias = 0.053,
0.043 and 0.068 for P, MSH and DH, respectively;
Additional file 1: Table S3). This indicates that, on aver-
age, the ABC method slightly overestimates the value of
the homoplasy measures by approximately 5% on these
sets of simulations.
Apart from estimating homoplasy measures, we also

used ABC to estimate the value of τ. We found that
ABC and the pseudo-likelihood estimator (MPH) per-
form equally well to obtain estimates of the value of τ,
showing that both methods can correct for the effects of
homoplasy. As expected, the expansion time is strongly
underestimated by the method that does not take homo-
plasy into account (LSWH), particularly for older expan-
sion events where there are higher values of MSH and
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Fig. 2 Linear relationship between TS and three measures of homoplasy: a P (ρ = −0.1282, intercept = 0.3783, slope = −0.2509, p-value = 4.83e−5),
b MSH (ρ =0.6903, intercept = 0.0893, slope = 0.9868, p-value <2.2e−16) and c DH (ρ =0.6989, intercept = −0.0541, slope = 1.1424, p-value <2.2e−16) in
999 simulations made with the demographic parameters θ0 = 0.03, θ1 = 30 and 10 different values of τ
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DH (Fig. 4). Additionally, we found that ABC gave good
estimations of the value of θ1, compared to LSWH and
MPH which gave overestimations of the actual value of
θ1 (Additional file 1: Figure S5), in line with previous
studies done using LSWH [3] and MPH [16]. It must be
pointed out that in ABC, as in any Bayesian method, the
estimates of the parameters depend on the prior distri-
butions used for the parameters. Prior distributions
should contain all the possible demographic parameter
values [30] and should not be very wide to avoid low ac-
ceptance rates in the ABC algorithm (step 5 of the ABC
algorithm in the Appendix).

Population expansions and homoplasy in data of Pinus
caribaea populations from central America
The time of expansion for one population of Pinus
caribaea in Central America was obtained using LSWH,
MPH and ABC (Table 1). We found that the only
method where homoplasy is not taken into account,
LSWH, produces lower estimates of τ compared to ABC
and MPH, suggesting that homoplasy may cause the ex-
pansion time to be underestimated by approximately
100,000 years in this case. The 95% confidence intervals
of τ for all methods is large however (Table 1). ABC-
based estimates of homoplasy are 0.11 and 0.246 for
MSH and DH respectively, which agrees with the theor-
etical estimates of 0.106 and 0.269 obtained for those
homoplasy measures using equations (24, Appendix)
and (17, Appendix) given the demographic parameters
estimated using ABC.

Discussion and conclusions
Here we propose a homoplasy metric, DH, which mea-
sures the proportion of pairwise differences that are not
observed due to homoplasy. Our theoretical estimates
and simulations confirm that the mean number of pair-
wise differences not counted due to homoplasy increase
when population expansion times are older, causing a
monotonic increase in the value of DH (Fig. 1). We also
confirm that DH has a strong, linear relationship with
underestimation of population expansion times using
classical methods of inference based on pairwise differ-
ences (Fig. 2), with older expansion times leading to the
expected higher TS [16] and corresponding increase in
DH. This in contrast to the standard homoplasy index
for multi-locus haplotypes, P, which shows no clear rela-
tion to TS and, starting from a certain τ value, actually
decreases as a function of expansion time. The latter can



0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.
0

0.
1

0.
2

0.
3

a

P true value

E
st

im
at

e 
of

 P

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

b

MSH true value

E
st

im
at

e 
of

 M
S

H

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

c

DH true value

E
st

im
at

e 
of

 D
H

1.5
3
4.5
6
7.5
9
10.5
12
13.5
15

Fig. 3 ABC estimates of a P, b MSH and c DH compared with their true values in 100 simulations done with the demographic parameters
θ0 = 0.03, θ1 = 30 and 10 different values of τ. A linear model was fitted to analyze the relationship between each homoplasy measure true value
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be clearly understood from the expected relation be-
tween expansion time and homozygosity under the ISM
and SSM model. This shows the value of a homoplasy
metric that directly captures the underestimation of the
number of mutations [18] when trying to capture effects
on demographic inference.
Although conceptually and empirically DH most

closely relates to the way that homoplasy causes under-
estimation of expansion time, the average decrease of
per-locus heterozygosity, MSH, has a rather similar
1
2

3
4

5

a

LSWH MPH ABC
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Fig. 4 Estimation of τ using three methods (LSWH, MPH and ABC). The box
θ0 = 0.03 and three different values of τ were used, a τ = 3, b τ = 6 and c
value of τ in each plot is displayed with the dashed line
relation to population expansion time (Fig. 1) and also
correlates strongly with the underestimation of the
population expansion time (Fig. 2). It has been shown
that in constant population sizes the value of MSH is de-
termined by θ [12], the expected number of mutations
between a pair of sequences, so the fact that it also in-
creases with τ is not entirely surprising. Our theoretical
estimates indeed confirm that MSH increases monoton-
ically with expansion time under the stepwise demo-
graphic expansion model (Fig. 1) and also show that
PH ABC

5
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c
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plots of the estimation of τ were done on simulations where θ1 = 30,
τ = 9. 100 simulations were performed for each value of τ. The actual



Table 1 Estimates of homoplasy and times of expansion in the population of Pinus caribaea analyzed

dτLSWH dτMPH dτABC MSH DH Theoretical
estimate of MSH

Theoretical
estimate of DH

4.074 (1.359 – 6.086) 5.994
(1.732 – 10.297)

5.591
(2.645 – 11.005)

0.115
(0.026 – 0.244)

0.246
(0.106 – 0.415)

0.106 0.269

Time of expansion in years (LSWH) Time of expansion in years (MPH) Time of expansion in years (ABC)

224,900 (75,000 – 335,900) 330,800
(95,600 – 568,400)

308,600
(146,000 – 607,400)

The estimated values of the time of expansion were obtained using three different methods (LSWH, MPH and ABC). The estimated values of MSH and DH were
obtained using ABC. The numbers inside the parentheses denote the upper and lower limits of the 95% confidence interval for the parameter or homoplasy
measure. The theoretical estimates of MSH and DH were estimated using the values of τ and θ1 obtained using ABC and the Eqs. (24) and (17)
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there is a relationship between the number of mutations,
predicted by older coalescent times due to older popula-
tion expansions, and MSH on the stepwise population
expansion model. Additionally, MSH and DH are not af-
fected by changes in the number of linked SSRs ana-
lyzed, while P does depend on the number of linked
SSRs studied.
The usefulness of homoplasy metrics such as DH and

MSH depends in part on how well they can be estimated
from data. We have shown that we can obtain reason-
able average estimates of MSH and DH using ABC [31].
Compared to MASH, the ABC method we propose is
not biased by the fraction of homoplasy unmeasurable
by MASH. It thereby offers a natural solution to the
quantification of homoplasy. Additionally, ABC can
estimate the posterior distribution of demographic
parameters of interest through explicit modeling of SSR
evolution under different demographic scenarios. The
approach proved successful in correcting for bias in the
inference of expansion time, with similar performance to
MPH [16] which also explicitly accounts for homoplasy
assuming the SSR’s evolve according to a SMM. One
advantage of ABC, in addition to allowing for direct
estimates of homoplasy, is that more complicated muta-
tional models of SSR evolution can easily be incorpo-
rated. This could be important, as many SSR are known
not to evolve in a strictly stepwise manner [32].
Given the potential for erroneous demographic infer-

ence when using linked SSR, it is important to obtain
such homoplasy estimates from empirical data. With our
ABC approach, we were able to estimate values of MSH
and DH in a published dataset of Pinus caribaea. We
found that the underestimation of the expansion time
assuming a model that does not take homoplasy into ac-
count is of around 80,000 to 100,000 years, a reduction
of around 28 to 32% compared to the value estimated
with methods that use a more realistic model of SSR
evolution where homoplasious events are possible. As
with the ABC approach proposed here, other authors
have suggested to use model-based approaches to infer
past demographic events using linked cpSSR markers in
spruces [11]. Since ABC simulation based approaches
provide an estimate of homoplasy, we believe that ABC
approaches are useful to quantify the effect of homo-
plasy on demographic parameters and summary statis-
tics of interest. To our knowledge, this is the first time
that homoplasy parameters have been inferred using
population genetic data.

Additional file

Additional file 1: Figures S1-S5 and Tables S1-S3. (DOCX 3133 kb)

Appendix
Expected values of the parameters π, Fi and F given a
certain coalescent time
Given a certain coalescent time Tij between lineages i
and j, it is possible to estimate the expected values of a
diversity statistic λ, such as the mean number of
differences between two haplotypes (π), the expected ho-
mozygosities at one i SSR locus (Fi) and the expected
homozygosity in a linked SSR multilocus haplotype (F)
under the ISM and the SMM. If we can estimate that
quantity, we can use this equation:

E λ½ � ¼
Xt

x¼1
E λjTij ¼ x
� �

P Tij ¼ x
� � ð9Þ

to obtain the expected value of those diversity statistics
given different parameters of a stepwise demographic ex-
pansion model. Using those expected values, we can calcu-
late estimates of the homoplasy measures DH, MSH and P.
We will start by defining the values of the summary

statistics πISM and πSMM given a particular coalescent
time. πISM and πSMM define the value of π in a set of
linked multilocus SSR haplotypes hISM evolving under
the infinite sites model ISM, and in a set of linked multi-
locus SSR haplotypes hSMM that evolved under the
symmetrical stepwise mutation model SMM, respect-
ively. The expected value of πISM for L loci given a
certain coalescent time Tij and a mutation rate per gen-
eration in one loci equal to u is:

dx.doi.org/10.1186/s12862-017-1046-4
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E πISM½ j Tij � ¼ Υ ¼ 2LuTij ð10Þ
To obtain the expected value of πSMM, we used the

random walk model formulas from [33] to estimate the
expected number of differences between a pair of SSR’s
given that x mutations have taken place in the two line-
ages since their divergence from a common ancestor:

If x is odd: E½πSMM #mutations ¼ xj � ¼ 1

2x−1
xþ 1
2

x
xþ 1
2

0
B@

1
CA

ð11Þ

If x is even: E½πSMM #mutations ¼ xj � ¼ 1

2x−2
x
2

x−1
x
2

0
B@

1
CA

ð12Þ
The number of mutations x that happened between

each pair of SSRs is distributed as a Poisson random
variable with mean Υ ¼ 2LuTij . Therefore, the prob-
ability of having an x number of mutations is:

P #mutations ¼ x½ � ¼
Υ
L

� �x
e−

Υ
L

x!
ð13Þ

Where L is the number of loci. Using those facts, we
can obtain the expected number of differences πSMM

using the following formula:

E πSMMj Tij
� � ¼ L

X∞

x¼0
E½πSMM #mutations ¼ xj �
P½#mutations ¼ x�

ð14Þ
To be practical, the past sum was carried out untilPr
x¼0P #mutations ¼ x½ � was bigger or equal to 0.999

for the smallest possible value of r.
Following (9), (10), and (14), we can obtain the ex-

pected values of πSMM and πISM using:

E πISM½ � ¼
Xt

x¼1
E πISMjTij ¼ x
� �

P Tij ¼ x
� � ð15Þ

E πSMM½ � ¼
Xt

x¼1
E πSMMjTij ¼ x
� �

P Tij ¼ x
� � ð16Þ

The values of E[πSMM] and E[πISM] can be combined
to obtain the expected value for the homoplasy param-
eter DH:

E DH½ � ¼ E πISM½ �−E πSMM½ �
E πISM½ � ð17Þ

We can also obtain the expected value of MSH by
estimating the expected values of the homozygosity
parameters for each of the i SSR loci under the infinite
sites model Fi
ISM ¼ 1−Hi

ISM and the stepwise mutation
model Fi

SMM ¼ 1−Hi
SMM . If we have L SSR’s:

E Fi
ISMj Tij

� � ¼ 1−uð Þ2Tij ¼ e−2Tiju ¼ e−Υ=L ð18Þ

To obtain the value of Fi
SMM we followed [34] deriva-

tions of the expected values of heterozygosity. They
defined the probability of having an equal number x of
mutations that increase or decrease the number of re-
peats in a SSR given that 2x mutations have occurred:

P x mutations that increase repeat number j#mutations ¼ 2x½ �

¼ 2x
x

	 

1
2

	 
2x

ð19Þ
And given that the probability of having 2x mutations is:

P #mutations ¼ 2x½ � ¼
Υ
L

� �2x
e−

Υ
L

2xð Þ!
ð20Þ

Then, summing over all possible values of x, we obtain
the value of FSMM:

E Fi
SMMj Tij

� � ¼ X∞

x¼0
P½ x mutations that increase repeat number

j#mutations ¼ 2x�P mutations ¼ 2x½ �
ð21Þ

This sum was also done until
Pr

x¼0P #mutations ¼ x½ �
was bigger or equal to 0.999 for the smallest possible
value of r. Using (9) we get:

E Fi
SMM

� � ¼ Xt

x¼1
E Fi

SMMjTij ¼ x
� �

P Tij ¼ x
� � ð22Þ

E Fi
ISM

� � ¼ Xt

x¼1
E Fi

ISMjTij ¼ x
� �

P Tij ¼ x
� � ð23Þ

Combining those equations, an analytical equation for
the expected value of MSH can be obtained:

E MSH½ � ¼ 1−

PL
i¼1

E Fi
ISM½ �

E Fi
SMM½ �

L
¼ 1−

E Fi
ISM

� �
E Fi

SMM

� �
ð24Þ

We can also derive a theoretical estimate of homozy-
gosity in the haplotype composed of the L SSR loci
under the ISM and SMM. Under the ISM, the expected
homozygosity value is equal to:

E FISMj Tij
� � ¼ 1−Luð Þ2 Tij ¼ e−2L Tiju ¼ e−Υ ð25Þ

To calculate the expected homozygosity under the
SMM in a haplotype containing a set of linked SSR’s, we
use the following formula:
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E FSMMj Tij
� � ¼ X∞

x¼0
P½two haplotypes are identical by state

jmutations ¼ x�P #mutations ¼ x½ �
ð26Þ

To calculate the probability that two haplotypes are
identical by state given that x mutations happened be-
fore they coalesce to a common ancestor it is necessary
to: 1) Count all the possible ways in which x mutations
could happen to make the two haplotypes identical by
state and 2) Divide that number between all the possible
ways in which x mutations could be distributed along
the haplotypes. Many of the possible distributions of
mutations that could make two haplotypes identical by
state have a very low probability of occurring, where
most of those cases involve having a very high number
of mutations, therefore ignoring those cases does not
alter much the value of E[FSMM] calculated. We found
that the following formula provides a good approxima-
tion to the value of FSMM:

E FSMMj Tij
� �

≈P #mutations ¼ 0½ �

þL
XL

x¼1
P½2x mutations landed on the same

microsatellite and two identical

by state haplotypes were produced�

þ
XL

x¼2

L
x

	 

P 2 mutations landed½

on x different microsatellites and two

identical by state haplotypes

were produced�

The past formula can also be expressed as:

E FSMMj Tij
� �

≈P #mutations ¼ 0½ �
þ L

XL

x¼1
P½2x mutations landed on the same

microsatellite j#mutations ¼ 2x�P mutations ¼ 2x½ �
P½x mutations that increase repeat number

j#mutations ¼ 2x� þ
X

x¼2

L L
x

	 

P½2 mutations

landed on x different microsatellites j#mutations ¼
2x�P #mutations ¼ 2x½ �

Yx
i¼1

P½1 mutation that

increase repeat number j#mutations ¼ 2�
ð27Þ

Where P[#mutations = 2x] is given by (20), substituting
Υ/L by Υ P[x mutations that increase repeat number | #
mutations = 2x] is given by (19) and:
P½2x mutations landed on the same microsatellite

j#mutations ¼ 2x� ¼ 1
L

	 
2x

ð28Þ

And, using the multinomial distribution, we can get:

P½2 mutations landed on x different microsatellites

j#mutations ¼ 2x� ¼ 2x!Qx
i¼12!

1
L

	 
2x

ð29Þ

Then, using (9), we get:

E FSMM½ � ¼
Xt

x¼1
E FSMMjTij ¼ x
� �

P Tij ¼ x
� � ð30Þ

E FISM½ � ¼
Xt

x¼1
E FISMjTij ¼ x
� �

P Tij ¼ x
� � ð31Þ

Using those results, we can compute an approximate
expectation for the value of P, which estimates the hap-
lotypic reduction in heterozygosity due to homoplasy, as:

E P½ � ¼ 1−
E FISM½ �
E FSMM½ � ð32Þ

ABC algorithm
The input of the algorithm is the value of three summary
statistics S calculated from a set of linked haplotypes with
L SSR loci. Those three statistics S are V, H and a. We de-
fine V as the mean of the variance in the size of the SSRs
across loci, H is the expected heterozygosity averaged
across loci and a is the number of distinct haplotypes. The
output of this ABC algorithm is a sample of the posterior
distribution of the demographic parameters θ0, θ1, τ and a
sample of the posterior predictive distribution of the
homoplasy measures P, MSH and DH [35]. The ABC
algorithm uses the following steps:

1) Read a set of H haplotypes with L linked SSRs per
haplotype and compute their values of V, H and a.

2) Simulate values of θ0, θ1 and τ from their respective
prior distributions.

3) Simulate a number of H haplotypes with L linked
SSRs with a genealogy created under the coalescent
model employing the demographic stepwise
expansion model and the above values of θ0, θ1
and τ.

4) Estimate V*, H*, a*, P, MSH, DH from the simulated
linked SSRs.

5) If all of |V-V*|/V, |H-H*|/H and |a-a*|/a are less
than ε = 0.01, then record the values of θ0, θ1, τ, P,
MSH and DH.
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6) Return to 2) until N values of θ0, θ1, τ, P, MSH and
DH are obtained (which means that we have
obtained N accepted simulations).

The prior distribution used for θ1 was uniform (0,200).
For the reduction in the value of θ1 to θ0 we used a prior
distribution that followed a uniform(0, 0.01), based on
that reduction we obtained the value of θ0 for each
simulation. The prior distribution for τ was dependent

on the value θ1e sampled from each simulation and was

distributed as uniform(0, 2* θ1e ). That prior distribution
for τ was motivated by the fact that in a constant popu-
lation size with a θ value of X, the expected coalescent
time multiplied by 2Lu is 2X if the number of samples is
large. Therefore, we decided to leave the expected co-
alescent time in a constant population multiplied by 2Lu
as an upper bound for the prior distribution of τ. The
same set of prior distributions was used for all the ABC
analysis reported in this paper.
The N values of θ0, θ1, τ are samples from the distribu-

tion P(Θ| |V −V*| /V < ε, |H −H*| /H < ε, | a − a*| /a < ε)
of those parameters if we define Θ as one demographic par-
ameter. On the other hand,the N values of P, MSH and DH
recorded are samples from the posterior predictive
distribution P(H| |V −V*| /V < ε, |H −H*| /H < ε, | a −
a*| /a < ε), where H is a homoplasy measure [35]. The im-
portance of choosing an appropriate ε value has been par-
ticularly well explained in a recent review [36], where the
authors highlight that choosing a small ε value is important
to make sure that the distributions P(Θ| |V −V*| /V < ε, |
H −H*| /H < ε, | a − a*| /a < ε) and P(H| |V −V*| /V < ε, |
H −H*| /H < ε, | a − a*| /a < ε) converge to the posterior dis-
tribution P(Θ| S) and P(H| S), respectively. In our case, we
used an ε = 0.1, a value previously used in analysis contain-
ing the same summary statistics used here [27]. We evalu-
ated if the ABC approach, including the choice of that
value of ε, gave accurate point estimates of Θ and H and
distributions that converge to the posterior distributions of
Θ and H in the next section.
We used the function ‘density’ from R to build an esti-

mate of the posterior distributions of each of the three
parameters and the three homoplasy measures in the
model based on the N values recorded of the homoplasy
measures and the demographic parameters. The modes
of the posterior and posterior predictive distributions
were used as estimates of each of the parameters and
homoplasy measures, respectively. We chose to use the
mode, instead of the median or the mean, as our point
estimate of the parameter and homoplasy measures for
reasons that will be detailed in the next section.
To test the exactitude of our ABC method to estimate

demographic parameters and homoplasy measures, we
created 3 sets of simulations, where each simulation
contained a set of 150 haplotypes composed of 6 linked
SSRs. One set was used to analyze the change in the esti-
mation of the homoplasy measures at ten different
values of τ {1.5, 3, 4.5, 6, 7.5, 9, 10.5, 12, 13.5, 15}, per-
forming 10 simulations for each value of τ. The other
three sets were used to analyze the estimation of the ho-
moplasy measures in three specific values of τ {3,6,9},
where we performed 100 simulations for each value of τ.
Our ABC approach was run in each replicate of each
simulation of those four sets until N= 10,000 simulated
acceptances were obtained. Due to computational con-
straints associated with the calculation of the confidence
intervals, we used N=1,000 simulated acceptances in the
Pinus caribaea dataset.

Quality of demographic parameter estimates
We used a set of metrics to measure the quality of our
parameter estimates using ABC, as recommended in
[30]. One of those metrics is the relative bias, which is
the average difference between the estimated and true
value of the parameter divided by its true value [28].
First, we compared the relative bias when using the me-
dian, mode and mean as point estimates of the demo-
graphic parameters τ and θ1, and of the homoplasy
measures P, MSH and DH. This comparison was per-
formed in the three different sets of 100 simulations de-
scribed in the past section where the values of τ were 3,
6 and 9. We found that, on average, using the mode of
the posterior distribution as a point estimate provided a
smaller relative bias for estimates of τ, MSH, P and DH
(Additional file 1: Table S3). The only parameter where
using the mean of the posterior distribution provided a
better point estimate was θ1 (Additional file 1: Table S3).
For simplicity and consistency, we decided to use the
mode of the posterior distribution for all the point esti-
mates we report. This decision is motivated by the fact
that we were more interested in estimating τ and the ho-
moplasy measures P, MSH and DH.
We evaluated our inferred posterior distributions esti-

mating the 50%, 75% and 90% coverage, defined as the
fraction of times that the true parameter estimate is in-
side the 50%, 75% and 90% credible intervals [28]. We
define the X% credible interval as the X% highest poster-
ior density interval (HPD). If the credible intervals
created using the inferred posterior distributions are cor-
rect and have good coverage properties, the true param-
eter value should be present inside the 50%, 75% and
90% credible intervals with probabilities of 50%, 75%
and 90%, respectively. We found that, on average, the
50%, 75% and 90% credible intervals for the demo-
graphic parameter τ, and the homoplasy measures P, DH
and MSH had good coverage properties. τ and the ho-
moplasy measures had a probability of being inside the
credible interval that matched expectations, since the
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absolute difference between those probabilities and the
expected probabilities was smaller than 0.05 (Additional
file 1: Table S2). In the case of the parameter θ1, we found
that, on average, the parameter had slightly more conser-
vative and broad intervals, since the true parameter
tended to be inside the credible interval more often than
what was expected, with the difference between the ex-
pected and observed probabilities of θ1 being in the cred-
ible interval was between 0 and 0.1 (Additional file 1:
Table S2). This indicates that our ABC method, including
our selection of prior distributions and ε, is inferring ac-
curate posterior distributions for the homoplasy measures
and τ, and slightly biased posterior distributions for the
parameter θ1.

Command lines

Command Line 1:
./msHOT 150 100 -t 30 -eN $tau 0.001 -Q -z 6 -seeds
1 2 5
Where $tau took ten different values {0.025, 0.05,
0.075, 0.1, 0.125, 0.15, 0.175, 0.2, 0.225, 0.25}.
Command Line 2:
./msHOT 150 100 -t $Theta -eN 0.1 0.001 -Q -z $i
-seeds 1 2 $i
Where $i took values going from 2 to 9, and $Theta
was equal to $i times 5.
Command Line 3:
./msHOT 150 100 -t 30 -eN $tau 0.001 -Q -z 6 -seeds
1 2 3
Where $tau took ten different values {0.025, 0.05,
0.075, 0.1, 0.125, 0.15, 0.175, 0.2, 0.225, 0.25}.
Command Line 4:
./msHOT 150 200 -t 60 -eN $tau 0.001 -Q -z 6 -seeds
1 2 3
Where $tau = {0.0125, 0.025, 0.0375, 0.05, 0.0625,
0.075, 0.0875, 0.1, 0.1125, 0.125}
Command Line 5:
./msHOT 150 10 -t 30 -eN $tau 0.001 -Q -z 6 -seeds
1 2 3
Where $tau took ten different values {0.025, 0.05,
0.075, 0.1, 0.125, 0.15, 0.175, 0.2, 0.225, 0.25}.
Command Line 6:
./msHOT 150 100 -t 30 -eN $tau 0.001 -Q -z 6 -seeds
2 3 4
Where $tau = {0.05, 0.1, 0.15}.
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