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Abstract

Background: Ancient Di-Qiang people once resided in the Ganging region of China, adjacent to the Central Plain
area from where Han Chinese originated. While gene flow between the Di-Qiang and Han Chinese has been proposed,
there is no evidence to support this view. Here we analyzed the human remains from an early Di-Qiang site (Mogou site
dated ~4000 years old) and compared them to other ancient DNA across China, including an early Han-related
site (Hengbei site dated ~3000 years old) to establish the underlying genetic relationship between the Di-Qiang

and ancestors of Han Chinese.

Results: We found Mogou mtDNA haplogroups were highly diverse, comprising 14 haplogroups: A, B, C, D (D¥,
D4, D5), F, G, M7, M8, M10, M13, M25, N*, N9a, and Z. In contrast, Mogou males were all Y-DNA haplogroup 03a2/P201,
specifically one male was further assigned to O3a2c1a/M117 using targeted unique regions on the non-recombining
region of the Y-chromosome. We compared Mogou to 7 other ancient and 38 modern Chinese groups, in a total of
1793 individuals, and found that Mogou shared close genetic distances with Taojiazhai (@ more recent Di-Qiang population),
Hengbei, and Northern Han. We modeled their interactions using Approximate Bayesian Computation, and support
was given to a potential admixture of ~13-18% between the Mogou and Northern Han around 3300-3800 years ago.

Conclusions: Mogou harbors the earliest genetically identifiable Di-Qiang, ancestral to the Taojiazhai, and up to ~33%
paternal and ~70% of its maternal haplogroups could be found in present-day Northern Han Chinese.

Keywords: Di-Qiang population, Ancient DNA, Mitochondrial DNA, Non-recombining region of the Y-chromosome,

Han Chinese population

Background
The Huaxia is the earliest Chinese dynasty to emerge
~2000 BC along the Yellow River. This population grew
from the Central Plain area and later became established
as the Han Chinese during the Han Dynasty (206 BC to
220 AD). Throughout history, the Han Chinese contin-
ued to have complex interactions with surrounding eth-
nic minority groups in their vicinity [1, 2], whose details
are being studied and debated by historians, archaeolo-
gists, anthropologists and geneticists.

One important pastoral agriculturist group that interacted
with the Han Chinese from the west near the upper reaches
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of the Yellow River in the Gansu-Qinghai (or Ganging) re-
gion is a historical group called the Di-Qiang. Around the
middle Neolithic, as people (including ancestors of the Han)
expanded away from the Central Plain due to improved
agricultural practices [3], they encountered the Di-Qiang
people, and both groups have occupied the Ganging [4, 5].
A recent ancient DNA study goes further to suggest that a
once Ganging population, the Taojiazhai people, is related to
the Di-Qiang, and even contributed genetically to the Han
Chinese [6]. However, an issue with the Taojiazhai was that
the archeological site dated to ~1700-1900 yr. BP, which oc-
curred well within the time period of the Han dynasty, rais-
ing the possibility that some Taojiazhai individuals might
have been admixed in Han Chinese.

In this study, we overcome this problem by investiga-
tion of the Mogou cemetery (Fig. 1), a considerably older
Di-Qiang site in the Gangqing region that is enclosed by
the Qinghai-Tibetan Plateau to the west and the Tengger
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Fig. 1 Geographic location and estimated age of ancient groups used in this study. Ganging region (shaded red) overlies the middle and upper
reaches of the Yellow River and is adjacent to the Central Plain area (shaded orange), where ancestors of the Han lived

Hengbei site
(2800 Asooo ¥BP)

Central Plain area

.

Desert to the north [7]. The accelerator mass spectrom-
etry (AMS) radiocarbon dating of the Tomb M633 hu-
man bone samples (slightly more recent than specimens
collected for this study) yielded 3145 + 45 *C yr. BP
and 3526-3336 cal. yr. BP after correction with Damon’s
table [8]. Cultural artifacts, such as funerary pottery con-
structed of red clay with features found prominently in
the Qijia culture, place this site in the late Neolithic to
early Bronze Age (~3600 to 4200 yr. BP) [9] and associ-
ated with the Di-Qiang [10]. So the Mogou represents
an early Di-Qiang predating the Han dynasty.

To clarify the genetic relationship between the ancient
Di-Qiang and early Han Chinese, we analyzed the new
Di-Qiang from Mogou, using hyper variable sequence I
(HVS-I) and coding region of mtDNA and non-
recombining region of Y-chromosome (NRY), and com-
pared them to other ancient DNA and contemporary
groups across China.

Methods

Population samples and Mogou specimens

A total of 1793 individuals were collected, belonging to 8
ancient (235 individuals) and 38 modern (1558
individuals) groups (Table 1). The Mogou site (34°69'N
103°86"°E) is located in the Tibetan Autonomous Prefec-
ture of Gannan, Gansu Province, being at the geographical

center of China and upstream of the Yellow river [7]. The
high altitude (2209 to 3926 m) and a continental climate
with an annual average temperature of 3.28 °C are favor-
able to ancient DNA preservation [11]. The Institute of
Cultural and Historical Relics and Archaeology in Gansu
Province excavated the cemetery, consisting of 26 graves,
with permission from the State Administration of Cultural
Heritage who has control over the archaeological excava-
tions in China. Nearly every grave contained multiple indi-
viduals due to the complex structure of the tomb. In total,
60 ancient human remains were exhumed from the
Mogou site for genetic analysis (see Additional file 1).

DNA extraction and laboratory environment

Prior to DNA extraction, the samples were cleaned using a
series of treatments to remove the exogenous contaminants
on the surface of the samples [12]. All of the operations
were performed in separate rooms of an ancient DNA la-
boratory to strictly avoid any external contamination. Pro-
cedures were carried out independently of molecular
biology experiments using present day DNA.

Before powdering, the bones and teeth surfaces were
wiped down using cotton soaked in sodium hypochlorite
solution. Bones and teeth were then soaked in a 5%
sodium hypochlorite solution for 15 min, and carefully
rinsed with 95% alcohol, and then UV-irradiated
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Table 1 List of populations used in this study
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Ancient DNA n  Approx.age  Sampled location References
population (yr BP)
Mogou 55 4000 Gansu This study
Hecun 9 4500 Guangxi Unpublished
Lamadong 171700 Liaoning [38]
Hengbei 64 3000 Shanxi [40]
Niuheliang 28 5000 Liaoning [41]
Taojiazhai 29 1900 Qinghai (6]
Dongdajing 17 1700 Inner Monglia [39]
Qilangshan 16 1700 Inner Monglia [37]
Modern n  Groups Sampled location/ethnicity (n)
population
Northern Han 267 5 Gansu (45), Qinghai (51), Shaanxi (53), Liaoning (51), Jiangsu (67) [16], 17,42,
43
Northern 192 4 Ewenki (47), Korean (48), Mongolian (49), Uygur (48) [44, 46]
minorities
Southern Han 168 5 Fujian (54), Guangdong (29), Guangxi (26), Hunan (16), Yunnan (43) [16], 17,42,
43
Miao-Yao 215 4 Hunan (102), Guangxi (73), Yunnan (40) [48]
Tai-Kadai 397 11 Buyang (31), Caolan (30), Jiamao (27), Lingan (31), Mak (33), Mollao (29), Mulam (39), Pou (34), [46, 49]
Sui (30), Then (30), Zhuang (83)
Austro-Asiatic 84 3 Bugan (32), Palyu (30), Va (22) [49]
Tibeto-Burman 235 6 Bai (90), Hani (33), Nakchu (30), Tibetan (35), Tujia (31), Yi (16) [45-47]

overnight. For dried bone material, a drilling machine was
used to remove the top layer to avoid any remaining surface
contaminants, and then powder was obtained for DNA ex-
traction by drilling holes into the remainder of the bone.
For the teeth, the dental calculus on the surfaces of the
teeth was removed before drilling dental cervix to obtain
cavitas pulpae powder. A turbid solution was then created,
containing a mixture of about 200 mg of bone or tooth
powder and 4.5 mL 0.5 mM EDTA (pH 8.0). This solution
was stored at 4 °C for 24 h, upon which 80 pL of 100 mg/
mL of proteinase K was added. The resulting solution was
placed in the hybridization oven overnight at 56 °C. The
precipitate was removed by centrifugation (3 min at
8000 rpm), and the clear supernatant extract was concen-
trated to 100pL using an ultrafiltration tube (Centurion®
YM-10) at 8000 rpm centrifugation. DNA was extracted
using the concentrated solution in accordance with the
QIAamp® Purification Kit manual. Furthermore, DNA ex-
traction was performed at least twice for each sample, and
every five ancient samples had one blank control.

Measures taken to ensure authenticity

To ensure the results are valid and reliable, we have kept
in strict compliance with the rules indicated for extract-
ing ancient DNA [13]. All laboratory personnel involved
in the operation were female. Moreover, to obtain

satisfactory results in ancient DNA research, the two
guidelines were followed:

1) Pre-PCR and post-PCR protocols were carried out
in two completely separate buildings. Experimenters
were only allowed to move from the pre-PCR lab
building to the post-PCR lab building each day,
avoiding contamination from PCR products into the
samples. The reverse was not allowed. The experi-
mental areas including both the PCR room and the
DNA extraction room have been equipped with Air
Shower, which removes the dust, hair and other
debris attached to clothes and reduces introduction
of contaminants from laboratory personnel.

2) During the study period, we relocated our laboratory
to a new campus, creating an opportunity to observe
whether our results could be replicated in the new
laboratory. Furthermore, different parts of the
samples were randomly selected for replicate
extraction and PCR amplification, in order to ensure
the results are reproducible.

Mitochondrial DNA amplification and haplogroup
assignment

Due to high degradation of DNA from the ancient sam-
ples, it is difficult to amplify long DNA fragments. We
thus designed two sets of primers (see Additional file 2)
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to amplify and sequence the mtDNA HVS-I region be-
tween positions 16,051 and 16,384. We also used both
the Sanger sequencing method and the amplified
product-length polymorphisms (APLP) method [14, 15],
through the design of two or three sets of specific and
corresponding primers (see Additional file 2).

The PCR amplification was carried out in a 12.5 pL re-
action mixture containing 2 pL of template DNA, 1.5x
reaction buffer (Takara, Japan), 2.5 mM MgCl,
(Promega, Germany), 0.25 mM dNTPs (Takara, Japan),
0.1 uM of each primer, 1 U of ExTag°Hot Start Version
DNA polymerase (Takara, Japan), 1 pL 20 mg/mL BSA,
and RNase-Free Water (Takara, Japan). Cycling parame-
ters were described as follows: initial denaturation at
94 °C for 5 min, followed by 34 cycles at 94 °C for 30s,
30s at 55 °C, elongation for 30s at 72 °C, with a final ex-
tension for 10 min at 72 °C and storage at 4 °C. Then,
the PCR amplification products were examined by agar-
ose gel electrophoresis. After the purification with the
QIA quick Gel Extraction Kit (Qiagen, Germany), the
amplification products were sequenced using the Big-
Dye® Terminator V3.1 Cycle Sequencing kit (Applied
Biosystems, USA). These sequences were analyzed, and
an output file was generated from the ABI PRISM™310
automatic sequencer. In the end, the mtDNA hap-
logroups were called based on SNPs from the hypervari-
able and the coding regions, and the East Asian mtDNA
classification tree [16, 17].

Sex identification and Y-DNA haplogroup assignment
The sex of the ancient specimens was determined by
PCR analysis of the X-Y Amelogenin Gene (AMG-PCR)
[18]. The primers are listed in Additional file 2. The Y
Chromosome SNPs M9, M214, M175, M122, M324, and
P201 were typed for the detection of the following hap-
logroups: K, NO, O, 03, O3a, and O3a2 [19-22]. The Y-
DNA haplogroups were called according to SNPs listed
in ISOGG 2014 (https://isogg.org/).

Non-recombining region of the Y chromosome (NRY) capture
We performed NRY capture of two Mogou males
(M@G18 and MG48). The DNA library was prepared with
NEBNext® Ultra™ DNA Library Prep Kit for Illumina® in
accordance to manufacturer’s instructions, which is simi-
lar to the Illumina TruSeq V2 protocol [23]. This library
preparation will perform end repair with 5 phosphoryl-
ation and dA-tailing, and make the damage-derived C-

Table 2 Sequencing metrics for two libraries of NRY capture
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to-T in the 5'-endoverhang fragments to have the re-
verse complement nucleotides G-to-A substitutions at
the 3'-end. After the ligation with NEBNext Adaptors
(that includes hairpin loop with uracil), the uracils in the
adaptor and DNA insert are then removed by USER
(uracil-DNA-glycosylase (UDG) and endonuclease VIII),
which would cause a small residual signal of C-to-T sub-
stitutions to be detected at the 5" (~1.8%) and no influ-
ence to the G-to-A substitutions at 3" terminal positions
(for MG18 ~11% and for MG48 ~16%) [23]. However,
within a CpG context, because the majority of cytosines
are methylated invertebrate genomes, which when de-
aminated, leaves thymine instead of uracil, the deamin-
ated cytosines in the majority of cases are not removed
in this CpG part even with the USER treatment (CpG
part: C-to-T substitutions for MG18 ~11% and for
MG48 ~15%, see Additional file 3).

Next, the 7.18 Mb targeted unique regions on the
NRY chromosome was used to design the array. We
used a similar experimental method of the one described
by Fu et al. [24], to do the in-solution hybridization en-
richment for the libraries. We then focused on the reads
passing Illumina quality control that had the expected
index combinations for these libraries. We sequenced
the libraries on the HiSeq X-Ten platform. We restricted
analysis to pairs of reads that had at least 11 base pairs
of overlap, merged the reads, and then mapped the
merged sequences to the human genome reference hg19
using BWA. We removed duplicated molecules prior to
analysis to reduce the influence of mapping errors. We
restricted our analysis to unique regions in the genome,
using Tandem Repeat Finder (for hgl9) and mapability
tracks (map 35-50%). Details of sequencing coverage on
NRY are shown in Table 2. The fragments size distribu-
tion of two Mogou male specimens show short length
fragments, which are typical for ancient DNA (see
Additional file 4).

Genetic analysis

Chromas 2.4.1 and Sequencher 5.2.3 were used for se-
quence assembly and to check sequence alignment. Gen-
etic distances (based on Fst [25]) between populations
are shown using Multidimensional Scaling (MDS), and
Analysis of Molecular Variance (AMOVA) were calcu-
lated in Arlequin (v3.5.1.2) [26]. The mtDNA hap-
logroup frequencies were shown using Principal
Component Analysis (PCA). Temporal networks or

Library Total fragments
(length = 35 bp)

Aligned fragments (length =
35 bp & map quality > =30)

Fragments on target (length 2
35 bp & map quality > =30)

Fragments on target after
duplicate removal (length = 35 bp)

Average
duplicates

Coverage

MG18
MG48

21,590,365
23,458,692

4455311
13,692,019

4,095,184
10,262,330

44977 91 0.59
752478 14 8.51
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TempNet [27], which shows networks stacked in three
dimensions (3-D), was used to explore the continuity of
haplotypes across time. The phylogeny of Y-DNA hap-
logroup O was inferred using Figtree in the BEAST
program [28] and tip dating of ancient DNA [29].
Demographic histories were simulated using Fastsim-
coal [30] and parameter distributions inferred by
Approximate Bayesian Computation (ABC) [31].

Results

A total of 55 of 60 samples from the Mogou site
(Additional file 1) were successfully replicated, and
verified to be different from the mtDNA of laboratory
personnel (see Additional file 5). All sequences were
submitted to GenBank under the accession numbers
KX085423-KX085477.

Mitochondrial DNA analysis
The organic preservation was relatively high for Mogou,
most likely related to its high elevation and low
temperature. For example, from the captured MG48 li-
brary, we obtained 97-fold coverage for the mtDNA gen-
ome. The contamination of MG48 was 0.048% (95% C.I.
0.545%-0.008%) based on the match rate to the mtDNA
consensus by running the contamination estimator Con-
tamMix [24]. We genotyped 55 samples for mtDNA
HVS-I and nt1040 0 T/C (for the M/N type), and further
SNP loci detection was carried out on the coding region
to ensure that haplogroup was correctly called based on
the results of the HVS-I motif. We found a total of 46
haplotypes (Table 3) with certain haplotypes shared by
two or more individuals buried in the same grave, sug-
gesting a matrilineal kinship among some individuals.
The haplotypes were analyzed using the correction cri-
terion developed by Alzualde et al. [32] to control for
the reduction in the genetic diversity due to kinship
[33]. Table 3 shows these haplotypes could be assigned
to 14 mtDNA haplogroups: A, B, C, D (D*, D4, and D5),
F G, M7, M8, M10, M13, M25, N* NO9a, and Z.
Additional file 6 shows the more frequent Mogou hap-
logroups were D (34.78%), C (10.87%), A (8.70%), and F
(8.70%), while the M8, M13, M25, and N* have only one
individual each. Most of these haplogroups occur among
East Asians [16] with M25 found in South Asians [34].
AMOVA was used to test how different classifications
would affect the variance among groups (Additional file 7).
We found geography explained the most variance among
groups. Compared to the variance given when all groups
were independent (variance among groups =2.01%), the
highest variance (variance among groups = 1.64%) was ob-
served when two geographic groups were classified, i.e.
Northern China (Mogou, Hengbei, Taojiazhai, Northern
Han and Northern minorities, Tibeto-Burman) and
Southern China (Southern Han and Southern minorities).
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The Tibeto-Burman was better grouped with Northern
China than independently (variance among groups=
1.33%) or with Southern China (variance among groups =
1.29%). The ancient groups (Mogou, Hengbei, Taojiazhai)
associated more with Northern Han (variance among
groups = 1.36%) than with Northern minorities (variance
among groups = 1.09%).

Y-chromosome analysis

Of the 55 samples, 15 males and 17 females were identi-
fied using molecular biology techniques. Remaining 23
samples were indeterminate for sex after testing the
AMG-PCR product. Only six amplified Y-SNP products
could be successfully replicated. Table 4 shows all six
Mogou males belonged to Y-DNA haplogroup O3a2/
P201. The two male specimens (MG18 and MG48) se-
lected for capture 7.18 Mb of the NRY chromosome,
after retaining positions with coverage at least 3-fold,
their Y-DNA haplogroups were identified to be O3a2c
and O3a2cla/M117, respectively. The MG48 was further
analyzed since a higher 8.51-fold coverage was better to
build the consensus.

We aligned MG48 with the published 71 HGDP East
Asian individuals with O haplogroup [35] to verify that
it could be properly placed within the haplogroup O
lineage. The consensus length, between MG48 (retaining
positions with coverage of at least 3-fold) and HGDP Y-
chromosome dataset, was 381,473 bp. Figure 2 shows that
all 72 sequences could be confidently assigned to Y-DNA
haplogroup O1, 02, O3 using 31 ISOGG defining SNPs,
and that the posteriors leading up to the O3a2c clade that
the MG48 falls under were 1.0, thus ensuring that its pos-
ition was highly resolved. The inferred Y-DNA substitution
rate of 7.76 x 107" (95% CI 3.89 x 107" to 1.13 x 10™°)
per site per year remained consistent with other ancient
DNA studies [36].

MDS of mtDNA genetic distances (Fst)

We calculated the genetic distance Fst and permutated
P-values of the ancient [6, 37—41] and modern groups [16,
17, 42—-49] based on mtDNA sequences. Additional file 8
shows that genetic distances were not significant between
Mogou and Hengbei (Fst = 0.003), Taojiazhai (Fst = 0.005),
Northern Han (Fst = 0.0004), Northern minorities (Fst=
0.005) then followed by Dongdajing (Fst =0.01), Qilang-
shan (Fst=0.02), and Lamadong (Fst=0.02). However,
there were significant genetic distances between Mogou
and Hecun (Fst =0.08), Niuheliang (Fst = 0.05), Southern
Han (Fst=0.03), Miao-Yao (Fst=0.03), Tai-Kadai (Fst=
0.05), Austro-Asiatic (Fst = 0.04), and Tibeto-Burman (Fst
=0.01). Figure 3 shows MDS plot (MDS stress = 0.001) of
a comparison among ancient samples, where Northern
and Southern China divided in the first dimension, but
Mogou, Hengbei and Taojiazhai clustered together.
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Table 3 mtDNA nucleotide changes in 55 Mogou samples

Haplotype Specimen Haplogroup Coding region SNPs Mutations in mitochondrial HVS-I (160001+)
ht1 MG28 A 10,400, 663 086-223-290-319-362

ht2 MG20 A 10,400, 663 093-129-223-284-290-319-362
ht3 MG23 A 10,400, 663 051-129-182C-183C-189-290-319-362
ht4 MG24 A 10,400, 663 223-290-311-319-362

ht5 MG8 B 9 bp deletion 111-140-183C-189-234-243
ht6 MG57

ht7 MG21 C 10,400, 14,318 223-298-327

ht8 MG37

ht9 MG36 C 10400, 14,318 093-129-223-298-327

ht10 MG41 C 10,400, 14,318 093-129-188-223-298-327
ht11 MG50,MG51, MG54 C 10,400, 14,318 129-192-223-298-327

ht12 MG38 D* 10,400, 5178 129-223-362

ht13 MG33 D* 10,400, 5178 151-223-290-362

ht14 MG11 D4 10,400, 5178, 3010 223-362

ht15 MG22

ht16 MG47, MG52, MG53

ht17 MG3, MG5, MG6 D4 10,400, 5178, 3010 223-274-362

ht18 MG45

ht19 MG48 D4 10,400, 5178, 3010 129-223-274-362

ht20 MG4 D4 10,400, 5178, 3010 223-311-362

ht21 MG40 D4 10,400, 5178, 3010 223-343-362

ht22 MG19 D4 10,400, 5178, 3010 223-292-311-328-362

ht23 MG10 D5 10,400, 5178,10,397 126-182C-183C-189-223-362
ht24 MG55 D5 10,400, 5178,10,397 129-164-172-182C-183C-189-223-266-362
ht25 MG58

ht26 MG18 D5 10,400, 5178,10,397 092-164-172-182C-183C-189-223-266-362
ht27 MG32

ht28 MG35 F 3970 189-304

ht29 MG42

ht30 MG44 F 3970 183C-189-304

ht31 MG31 F 3970 183C-189-232A-249-304

ht32 MG59 G 10,400, 4833 129-223-261-278-311-362
ht33 MG43 G 10,400, 4833 086-153-223-278-362

ht34 MG25 M7 10,400, 6455 223-295-362

ht35 MG27 M7 10,400, 6455 223-294-295-362

ht36 MG14 M8 10,400, 15487 T 184-223-298-319

ht37 MG9 M10 10,400, 10,646 223-311

ht38 MG29, MG30

ht39 MG49 M10 10,400, 10,646 093-129-193-223-311-357
ht40 MG39 M13 10,400, 6023 145-188-189-192-223-311-381
ht41 MG60 M25 223-304

ht42 MG2 N* 10,398 223-243-256

ht43 MG7 N9a 5417 114-223-261

ht44 MG13 N9a 5417 223-257A
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Table 3 mtDNA nucleotide changes in 55 Mogou samples (Continued)

Haplotype Specimen Haplogroup Coding region SNPs Mutations in mitochondrial HVS-I (160001+)
ht45 MG15, MG16, MG17 Z 10,400, 15,784 185-223-260-298
ht46 MG12 VA 10,400, 15,784 185-223-259-260-298

Figure 4 shows MDS plot (stress = 0.09) of a comparison
between ancient and modern populations, where Mogou
associated with the Northern minority and Southern mi-
nority (e.g. Austro-Asiatic) in the first dimension, and with
the Hengbei and Northern Han (e.g. Shaanxi, Qinghai,
Gansu) in second dimension. Hengbei and Taojiazhai both
associated with the Northern Han (e.g. Han Shaanxi,
Qinghai), and differed from Mogou in their increased as-
sociations with Southern minorities.

PCA of mtDNA haplogroup frequencies

Figure 5 shows Mogou is located at the center of
PCA among the Chinese and Tibetans. Entering from
bottom right are the Northern Han [16, 17, 42, 43]
and Northern minorities [44, 46]. From the top left are
Southern minorities [46, 48, 49] then the Southern Han
[16, 17, 42, 43]. The Tibeto-Burman speakers [45-47]
enters from the top right of this cluster (for details on
mtDNA haplogroup frequencies, see Additional file 9).

Temporal network analysis

To identify whether Di-Qiang did have an influence on
Han Chinese, we investigated the temporal network of
Mogou, Taojiazhai, and Northern Han. Figure 6a shows
haplotypes between Mogou and Taojiazhai were contigu-
ous, and some sharing with Northern Han. Figure 6b
shows that Mogou and Hengbei shared relatively more
haplotypes with Northern Han compared to Taojiazhai.

Approximate Bayesian computation (ABC) simulations

To understand the genetic relationship between Mogou,
Hengbei, and Northern Han, we proposed four models
(Model 1-4; Fig. 7) that described the possible demo-
graphic history that occurred among them. After per-
forming 1 million simulations for each model, the

Table 4 Y-DNA haplogroup-defining SNPs of Mogou males

probability of model occurrence was assessed by two
methods: acceptance-rejection (AR) [50] and weighted-
multinomial logistic regression (LR) [31]. The quality of
simulations was evaluated by R? coverage, etc. com-
pared to 1000 pseudo-observed, as described elsewhere
[51]. The best supported model was Model 1 (49-79%)
followed by Model 3 (16-31%; Fig. 7). We found the rea-
son for the similarity between Model 1 and 3 was be-
cause Model 1 described Mogou contributed relatively
few genes averaging at 15% (95% CI: 13-18%) into
Northern Han around 3500 years ago (95% CI: 3301—
3809; details in Table 5), which could approximate
Model 3 that explained Northern Han is closer to Heng-
bei. The overall simulation quality was good, with the
type I error (misclassified true models based on 1000
resamplings) of the four models being low ~18%. Every
parameter were estimated with high coverage and R* >
10% indicating that they were reliably estimated [51],
and there were noticeable improvements (on average
~12-fold; Additional file 10) to the posteriors of sum-
mary statistics used.

Discussion

In this study, we found that Mogou, being situated at
the geographic center of China, also lay at intersection
of Northern and Southern Chinese and Tibetans in
terms of haplogroup frequencies, suggesting it plays an
important role in the formation of early cultures along
the Yellow River. We argue that it possibly has a north-
ern origin, since more than 90% of its maternal hap-
logroups (A, B, C, D, F, G, M7, M8, M10, N9a, and Z)
matches with those typically found among ancient
groups across Northern China. In particular, the most
frequent haplogroup D in Mogou (34.78%) is consistent
with other ancient northern groups (Qilangshan 43.75%;

Specimen C F K NO N O 03 03a 03a2 Haplogroup
M216 M89 M9 M214 M231 M175 M122 M324 P201
CoT CoT C—G T—C G—A -5 bp T—C C—G T—C
MG3 C T G C G -5 bp C G C 03a2
MG9 C T G C G -5 bp C G C 03a2
MG18 C T G C G -5 bp C G @ 03a2
MG44 C T G C G -5 bp C G C 03a2
MG48 C T G C G -5 bp C G C 03a2
MG53 @ T G C G -5 bp C G C 03a2
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Fig. 2 Mogou male (MG48) was grouped under O3a2c on Y-DNA haplogroup O lineage using BEAST. O3a2c branches (blue); X-axis denotes time

Dondajing 41.17%; Niuheliang 28.57%; Taojiazhai
27.59%; Hengbei 23.44%; Lamadong 17.6%) and less fre-
quent in ancient southern group (Hecun 9.09%, unpub-
lished). Genetic distance also shows that Mogou is
closely related to two northern ancient groups (Hengbei
and Taojiazhai). AMOVA further supports the grouping
of these ancient DNAs alongside Tibetans and Northern
Han and Northern minorities in explaining the highest
variance among groups (1.64%; P-value <0.01).

The closest ancient relative to Mogou in our dataset was
the Hengbei people (genetic distance Fst=0.003), a
~3000 yr. BP population from the Central Plain region.
Mogou and Hengbei shared about 33% Y-DNA haplogroup
03a/M324, as well as several maternal haplogroups (D, A,

E, M10) and haplotypes (No. ht7, ht8, ht14, htl5, htl6,
ht37, ht38, ht45). Because the temporal network showed a
continuity of haplotypes across Mogou, Hengbei, and
Northern Han, we investigated this further by constructing
4 model scenarios on how their relationship might have
occurred. A higher model probability was assigned to a his-
tory where the Northern Han received ~13-18% maternal
genes from Mogou around 3300-3800 years ago (Table 5)
predating the formation of the Han.

The second closest ancient relative to Mogou was the
Taojiazhai (genetic distance Fst =0.005). All Mogou and
Taojiazhai males shared 100% Y-DNA haplogroup O3a/
M324, and many maternal haplogroups (D4, M10, F, Z)
and haplotypes (No.ht14, htl5, htl6, ht28, ht29, ht37,
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Model 4
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Fig. 7 Probability of model 1 to 4 occurrence. Each model is followed by a brief description about their demographic history. Mogou and Hengbei
are serial sampled at ~4000 and ~3000 yr. BP, respectively, and dashes indicate the uncertainty in whether they have direct modern descendants. In
contrast Northern Han has solid line to the present-day. The probability (0-100%) of each model occurrence is assigned using AR (acceptance-rejection)

ht38, and ht45). Few haplotypes were carried across to
the Northern Han on the temporal network. However,
the Taojiazhai appeared to differ from the Mogou in its
increased association with the modern Southern Chinese
in terms of haplogroup frequencies and Fst genetic
distance.

The closest modern relative to Mogou was the Northern
Han (genetic distance Fst=0.002) and the Northern mi-
norities (Fst=0.005), and then more distantly by the
Southern Han (Fst = 0.03) and Southern minorities (Fst =
0.03-0.05). Generally, the Y-DNA haplogroup O3a2/P201
from Mogou males is a common subtype of the O3a/
M324 branch, which occurs at a high frequency in extant
Han Chinese (43.37%) [43]. One Mogou male (MG48)
was further identified as O3a2cla/M117, which is a sub-
clade of O3a2c1-M134 that is commonly found in Sino-
Tibetan speakers and neighboring countries (e.g. Nepal,

Miaoyao speakers. Furthermore, MG48 clustered with
Han and Tibeto-Burman (e.g. Naxi, Yi, and Tujia) as op-
posed to southern groups (e.g. Dai, Miao) on the HGDP
Y-DNA haplogroup O lineage (Fig. 2).

Finally, the present-day Tibeto-Burman speakers were
also close to Mogou (genetic distance Fst=0.01) than
the Southern Han or Southern minorities. This was in
agreement with historical records about the migration of
ancient Di-Qiang people in the past. Some spread east-
ward, scattering in the middle reaches of the Yellow
River, while others migrated southwest to form the
Tubo, who are the ancestors of modern Tibetans, as well
as contributing to the Southwestern minorities through
integrating with the local population [5, 10].

Conclusion
We identified Mogou to be the earliest ~4000 yr. BP

Bhutan, and Korea), but varies greatly in frequency among  Di-Qiang population, and genetically related to
Table 5 Parameter estimates of best supported Model 1
Population Prior Distribution Mean Mode 95% HPD Pseudo-observed

R’ Bias RMSE Coverage Factor 2
Mogou 1 - 100,000 Uniform 799 824 699 887 045 0.18 033 85 0.94
Hengbei 1 - 100,000 Uniform 1489 1559 1356 1759 0.84 0 0.11 90 1
Northern Han 1 - 100,000 Uniform 657 600 596 826 09 -0.1 0.26 90 1
T 1 - 20,000 Uniform 5472 5661 5253 6389 0.76 -0.02 0.16 70 1
12 1 - 20,000 Uniform 3505 3703 3301 3809 0.51 -0.02 0.15 80 1
a 0.01 - 1 Uniform 0.146 0.143 0.127 0.183 044 0.94 112 79 0.7

Mogou, Hengbei, Northern Han are effective haploids

T1, Divergence time between Mogou and Hengbei (yr BP)
T2, admixture time between Mogou and Hengbei (yr BP)
a, proportion of admixture from Mogou into Northern Han
u, MtDNA (control region) substitution rate 9.883 x 1072 per site per year were used according to ancient DNA-calibrated rates [52]
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Taojiazhai in sharing up to 100% paternal (O3a) and
~60% maternal (D4, M10, F, Z) haplogroups. Among the
alternative models considered, simulations demonstrated
that Mogou and Hengbei once contributed genes into
the early Northern Han. Thus, Mogou is also similar
with the Northern Han in sharing up to ~33% paternal
(O3a) and ~70% maternal (D, A, F, M10) haplogroups.
We deduced that some Di-Qiang people had merged
into the ancestral Han population. As societies devel-
oped, the communication and blending of different re-
gions and cultures continued to be strengthened.
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