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Abstract

Background: The primary energy-producing pathway in eukaryotic cells, the oxidative phosphorylation (OXPHOS)
system, comprises proteins encoded by both mitochondrial and nuclear genes. To maintain the function of the
OXPHOS system, the pattern of substitutions in mitochondrial and nuclear genes may not be completely
independent. It has been suggested that slightly deleterious substitutions in mitochondrial genes are compensated
by substitutions in the interacting nuclear genes due to positive selection. Among the four largest insect orders,
Coleoptera (beetles), Hymenoptera (sawflies, wasps, ants, and bees), Diptera (midges, mosquitoes, and flies) and
Lepidoptera (moths and butterflies), the mitochondrial genes of Hymenoptera exhibit an exceptionally high amino
acid substitution rate while the evolution of nuclear OXPHOS genes is largely unknown. Therefore, Hymenoptera is
an excellent model group for testing the hypothesis of positive selection driving the substitution rate of nuclear
OXPHOS genes. In this study, we report the evolutionary rate of OXPHOS genes in Hymenoptera and test for
evidence of positive selection in nuclear OXPHOS genes of Hymenoptera.

Results: Our analyses revealed that the amino acid substitution rate of mitochondrial and nuclear OXPHOS genes
in Hymenoptera is higher than that in other studied insect orders. In contrast, the amino acid substitution rate of
non-OXPHOS genes in Hymenoptera is lower than the rate in other insect orders. Overall, we found the dN/dS ratio
of the nuclear OXPHOS genes to be higher in Hymenoptera than in other insect orders. However, nuclear OXPHOS
genes with high dN/dS ratio did not always exhibit a high amino acid substitution rate. Using branch-site and site
model tests, we identified various codon sites that evolved under positive selection in nuclear OXPHOS genes.

Conclusions: Our results showed that nuclear OXPHOS genes in Hymenoptera are evolving faster than the genes
in other three insect orders. The branch test suggested that while some nuclear OXPHOS genes in Hymenoptera
show a signature of positive selection, the pattern is not consistent across all nuclear OXPHOS genes. As only few
codon sites were under positive selection, we suggested that positive selection might not be the only factor
contributing to the rapid evolution of nuclear OXPHOS genes in Hymenoptera.

Keywords: Molecular evolution, Positive selection, Mitochondrial-nuclear interaction, Insects

* Correspondence: xinzhou@cau.edu.cn
Michael E. Pfrender and Xin Zhou share the co-senior authorship.
10Beijing Advanced Innovation Center for Food Nutrition and Human Health,
China Agricultural University, Beijing 100193, China
11Department of Entomology, China Agricultural University, Beijing 100193,
China
Full list of author information is available at the end of the article

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Li et al. BMC Evolutionary Biology  (2017) 17:269 
DOI 10.1186/s12862-017-1111-z

http://crossmark.crossref.org/dialog/?doi=10.1186/s12862-017-1111-z&domain=pdf
http://orcid.org/0000-0002-1407-7952
mailto:xinzhou@cau.edu.cn
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Background
Understanding the patterns and rates of molecular
evolution requires consideration of the role of muta-
tion, drift, and selection acting on individual genes. In
many cases, the effects of these forces are compli-
cated due to physical and/or functional interaction of
the affected genes. A classic system of such interact-
ing genes represents the OXPHOS pathway [1–3].
The OXPHOS pathway is the primary ATP source in
eukaryotic cells, generating 70–80% of the ATP de-
mand of cells [4–6]. The OXPHOS pathway com-
prises five enzyme complexes (complexes I-V), which
transport electrons to produce ATP. Complexes I, III,
IV, and V are composed of polypeptides encoded by
both the mitochondrial and the nuclear genes
(Table 1) [2, 7, 8]. Mitochondrial and nuclear
OXPHOS genes work together to maintain the ATP
production in the cell. Incompatible mitochondrial
and nuclear genes can reduce the efficiency of cellular
ATP production and contribute to increased oxidative
stress, leading to a variety of physiological issues, in-
cluding developmental abnormalities [3, 9] and re-
duced hybrid fitness [10, 11]. Interestingly, the
mitochondrial genome of animals often show a 5–20
times higher substitution rate than the nuclear gen-
ome [12–14] in large part due to fundamental differ-
ences between mitochondrial and nuclear genomes in
the mode of inheritance, ploidy level, effective popula-
tion size, and recombination [15–17]. A significant
component of the elevated substitution rate in the
mitochondrial genome is the lack of recombination,
which makes it prone to the accumulation of slightly
deleterious mutations [14, 15, 18]. As a result of the
rapid rate of molecular evolution and accumulation of
deleterious mutations in the mitochondrial genome, it has
been suggested that that nuclear OXPHOS genes should
be exposed to positive selection for compensatory substi-
tutions that maintain the functional properties of the
interacting genes in the OXPHOS system. [2, 6, 19–21].
A number of studies have examined the patterns of

molecular evolution in the OXPHOS system (e.g., [19, 20]).
The general pattern that emerges is that species with a high

amino acid substitution rates in mitochondrial genes also
exhibit a high amino acid substitution rate and an elevated
dN/dS ratio (i.e., the ratio of the number of non-
synonymous nucleotide substitutions per non-synonymous
site to the number of synonymous nucleotide substitutions
per synonymous site) in nuclear OXPHOS genes. This ob-
servation of an elevated substitution rate in nuclear
OXPHOS genes is consistent with the idea of positive selec-
tion driving compensatory mutations in nuclear OXPHOS
genes in response to the elevated substitution rate in mito-
chondrial OXPHOS genes [2, 19, 20]. Beneficial mutations
in nuclear OXPHOS genes are likely to be fixed as they
maintain the efficiency of the OXPHOS process. Consistent
with the positive selection hypothesis, substitutions in nu-
clear OXPHOS genes are over-represented in residues with
critical functional importance, including mitochondrial-
nuclear contacting residues [19], and regions in the nuclear
genome that are linked to hybrid breakdown [9].
While these previous studies have shown a pattern in

the rates of substitution in nuclear OXPHOS genes that
is consistent with the positive selection hypothesis, and
in some cases have identified sites under positive selec-
tion in nuclear OXPHOS genes, it remains unclear to
what extent the overall elevated amino acid substitution
rate of nuclear OXPHOS genes can be explained by
positive selection [19]. The signal of positive selection
on nuclear OXPHOS genes is usually weak, with overall
dN/dS ratios less than one [6] and with a small number
of sites under positive selection [19]. This weak signa-
ture of positive selection fuels an alternative hypothesis
that relaxed functional constraint on nuclear OXPHOS
genes may lead to an elevated amino acid substitution
rate and an elevated dN/dS ratio in lineages with ele-
vated rates of mitochondrial evolution [6, 22]. Given the
functional importance of the OXPHOS system, these
genes are likely to be under strong purifying selection,
resulting in low dN/dS ratios. Relaxed selection would
partially release genes from this constraint and the
resulting elevation in dN/dS ratios that would be hard to
distinguish from an elevation due to positive selection.
To dissect the role of positive selection, we focus on an
order of insects, Hymenoptera, with notoriously high

Table 1 Number of OXPHOS genes found in 1KITE data for each complex in this study

Complex Function Number of Nuclear
OXPHOS Genes

Number of Nuclear OXPHOS
Genes Used in This Study

Number of Mitochondrial
Genes

Number of Mitochondrial
Genes Used in This Study

I NADH:ubiquinone
oxidoreductase

34 16 7 7

II Succinate dehydrogenase 4 0 0 0

III Ubiquinol-cytochrome c
reductase

9 1 1 1

IV Cytochrome c oxidase 8 1 3 3

V ATP synthase 13 5 2 2
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mitochondrial substitution rates [23]. In this lineage, the
effect of positive selection driving nuclear OXPHOS
genes should be exaggerated compared to other insects.
The rate of molecular evolution varies substantially

across insect orders [24, 25]. Among the four largest in-
sect orders (Coleoptera, Diptera, Lepidoptera and Hy-
menoptera), the mitochondrial genes of Hymenoptera
show a significantly elevated amino acid substitution rate
compared to the rate of genes of other insect orders
[23], while nuclear-encoded non-OXPHOS genes seem
to evolve at similar rates across these orders [26]. There-
fore, Hymenoptera is a promising system to understand
OXPHOS gene evolution. In addition, while there are a
few studies on Hymenoptera showing elevated substitu-
tion rates in some nuclear OXPHOS genes, (e.g., genes
associated with hybrid incompatibility in a parasitoid
wasp, Nasonia [27]), the patterns of evolution of
OXPHOS genes across a broad range of insect species is
lacking.
In this study, we use published transcriptome se-

quence data [28] to explore the molecular evolutionary
patterns of mitochondrial and nuclear OXPHOS genes,
focusing on 31 insect species across Hymenoptera and
three other mega-diverse insect orders: Coleoptera,
Diptera, and Lepidoptera. We test (i) whether the amino
acid substitution rate of nuclear OXPHOS genes in Hy-
menoptera is significantly higher than the rate in the
other three insect orders, and (ii) whether the high
amino acid substitution rate of nuclear OXPHOS genes
is consistent with positive selection exerted by fast
evolving interacting mitochondrial OXPHOS genes.

Methods
Taxon sampling and sequence acquisition
Our data set comprises transcriptome sequence data
from 31 holometabolous insect species (details about se-
quence data source: Table S2 in Misof et al. [28]), in-
cluding 6 coleopterans, 8 dipterans, 9 hymenopterans,
and 8 lepidopterans (Table 2). Transcriptome sequence
data of the pea aphid (Acyrthosiphon pisum) was used as
an outgroup (Table 2).
Starting with a set of seven reference insect species

with sequenced genome (i. e., Nasonia vitripennis, Apis
mellifera, Acromyrmex echinatior, Tribolium castaneum,
Bombyx mori, Anopheles gambiae, Drosophila melanoga-
ster), OrthoDB5 (http://cegg.unige.ch/orthodb5) [29]
was used to identify 3284 single-copy ortholog genes. Of
these ortholog genes, 23 nuclear OXPHOS genes (Table
1) matched the Drosophila melanogaster FlyBase IDs of
known OXPHOS genes [7, 8]. A table of FlyBase
OXPHOS gene symbols and the corresponding
OrthoDB5 ortholog group IDs is provided in Add-
itional file 1: Table S1. A set of 1413 single-copy non-
OXPHOS genes were obtained by exploiting the

ortholog gene set studied by Misof et al. [28] excluding
OXPHOS genes.
Since mitochondrial genes were not included in the

gene set compiled by Misof et al. [28], we used a mito-
chondrial gene annotation pipeline [30] to search for
and annotate mitochondrial genes in the 32 transcrip-
tomes (31 holometabolous insect species and 1 outgroup
species). The mitochondrial genes of Acromyrmex echi-
natior, Harpegnathos saltator, and Cotesia vestalis had
poor coverage in the assembled transcript libraries. For
this reason, we used mitochondrial or nuclear genome
assemblies to obtain the mitochondrial gene sequence
data. Specifically, we made use of the genome assembly

Table 2 Insect species used in this study

Order Species

Hemiptera Acyrthosiphon pisum

Hymenoptera Acromyrmex echinatior

Hymenoptera Apis mellifera

Hymenoptera Bombus terrestris

Hymenoptera Chrysis viridula

Hymenoptera Cotesia vestalis

Hymenoptera Harpegnathos saltator

Hymenoptera Leptopilina clavipes

Hymenoptera Nasonia vitripennis

Hymenoptera Orussus abietinus

Coleoptera Aleochara curtula

Coleoptera Dendroctonus ponderosae

Coleoptera Gyrinus marinus

Coleoptera Lepicerus sp.

Coleoptera Meloe violaceus

Coleoptera Tribolium castaneum

Lepidoptera Bombyx mori

Lepidoptera Manduca sexta

Lepidoptera Nemophora degeerella

Lepidoptera Parides eurimedes

Lepidoptera Polyommatus icarus

Lepidoptera Triodia sylvina

Lepidoptera Yponomeuta evonymella

Lepidoptera Zygaena fausta

Diptera Anopheles gambiae

Diptera Aedes aegypti

Diptera Bibio marci

Diptera Bombylius major

Diptera Drosophila melanogaster

Diptera Lipara lucens

Diptera Triarthria setipennis

Diptera Trichocera saltator
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version 2.0 of Acromyrmex echinatior [31, 32], the gen-
ome assembly version 3.3 of Harpegnathos saltator [33],
and the assembled mitochondrial genome of Cotesia ves-
talis (GenBank accession number FJ154897.1 [34]).
Mitochondrial OXPHOS genes were assigned to one of
the OXPHOS enzyme complexes I, III, IV, and V (note
that OXPHOS complex II is encoded only by nuclear
genes) based on the information from MitoComp2 [8].
In total, we studied 13 mitochondrial OXPHOS genes,
23 nuclear OXPHOS genes, and 1413 nuclear non-
OXPHOS genes in this study (Table 1, Additional file 2:
Table S2).

Estimation of the amino acid substitution rate
A custom Perl script (Additional file 3) was used to ob-
tain codon alignments. In particular, nucleotide se-
quences were first translated into amino acid sequences.
The amino acid sequences were then aligned using
MUSCLE version 3.8.31 [35] with default parameters.
The amino acid sequence alignment was used as a blue-
print to infer the corresponding codon alignment.
Gblocks version 0.91b [36] was used to remove poorly
aligned regions in the resulting nucleotide sequence
alignments. Gblocks parameters were set as “-t = c -b4 =
6 -b5 = a -e = −gb1”, meaning that input aligned nucleo-
tide sequences were treated as codon alignment, the
minimum length of a block is 6-bp, and gaps are
allowed. Codon alignments were translated into the final
amino acid alignment with a custom Perl script
(Additional file 3) for phylogenetic tree reconstruc-
tion and amino acid substitution rate estimation.
To obtain the amino acid substitution rate of each

gene, gene trees were reconstructed from the amino acid
sequence alignment based on the topology from Misof
et al. [28]. The branch length between each ingroup spe-
cies to the outgroup species (Acyrthosiphon pisum) (the
distance from tips to root distance of the phylogenetic
tree) was used as the amino acid substitution rate of the
gene of the ingroup species. Phylogenetic trees were re-
constructed using RAxML version 8.2.3 [37] by applying
the PROTGAMMAAUTO model option, which auto-
matically selects the best-fitting amino acid substitution
model based on the log-likelihood value and approxi-
mates across-site rate heterogeneity with a gamma dis-
tribution. RAxML “-t” option was used for estimating
the branch length based on the given topology. The R
commands, “cophenetic” [38] and “read.tree” from R
package “ape” version 4.1, were used to retrieve the
branch length from a given species.
To test whether Hymenoptera differ in their amino

acid substitution rate from that of other insect orders,
we concatenated the aligned amino acid sequences of all
genes in one of three gene categories (mitochondrial
OXPHOS genes, nuclear OXPHOS genes, and nuclear

non-OXPHOS genes). Phylogenetic trees were recon-
structed based on the aligned concatenated amino acid
sequences using RAxML version 8.2.3 [37] with the
same setting used to build individual gene trees. The
branch length from a given species to the outgroup spe-
cies (Acyrthosiphon pisum) was used as a proxy for the
average amino acid substitution rate of the concatenated
sequences of the ingroup species. Phylogenetic trees
from concatenated sequences were visualized and col-
ored with the R package “ggtree” [39].
The two-cluster test implemented in the program

tpcv that is part of the LINTREE package (http://
www.personal.psu.edu/nxm2/software.htm) [40] was
used to test whether the amino acid substitution rate
of Hymenoptera differs from that of other insect or-
ders in the three gene categories. Tpcv was applied
on the concatenated sequences and the phylogenetic
tree from RAxML to test for statistical differences in
amino acid substitution rates of gene categories be-
tween Hymenoptera and non-Hymenoptera using the
amino acid p-distance and a Z-test (with critical
value = 0.05). For the two-cluster test of concatenated
mitochondrial OXPHOS sequences, three species were
removed (Aleochara curtula, Lepicerus sp., and Nemo-
phora degeerella) as we failed to identify five mito-
chondrial genes of these three species from the
transcriptome dataset (Additional file 2: Table S2),
which limited the number of amino acid sites that
could be used in the test.
The pairwise Wilcoxon rank sum test (pairwise.wilcox.

test) implemented in R [38] was used to test for differ-
ences in the amino acid substitution rates between
concatenated amino acid sequences of mitochondrial
OXPHOS, nuclear OXPHOS, and nuclear non-OXPHOS
gene. The Holm correction [41] was used to adjust the p-
values for multiple comparisons. Terminal branch length
(without the shared ancestoral branch length) was used
for Wilcoxon test to avoid potential dependence issue of
branch length between species.

Test for positive selection

a. dN/dS ratio test for each gene

We used the branch model in codeml from the PAML
package version 4.8 [42] to test whether the dN/dS ratio
of each gene is significantly higher in Hymenoptera than
in the other insect orders. An example of the branch test
control file is provided as supplementary file (Additional
file 3). The tips of the Hymenoptera clade were labeled
for the branch test. The null hypothesis of the branch
test was that all lineages shared the same dN/dS ratio.
The alternative hypothesis was that Hymenoptera had a
different dN/dS ratio from other lineages. Chi-square
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test (critical value = 0.05) was used to test whether the
alternative hypothesis was significantly better than the
null hypothesis based on the maximum likelihood score
of each test. If the alternative hypothesis was accepted
and if the dN/dS ratio of Hymenoptera was higher than
that of the other lineages, we considered the genes of
Hymenoptera having experienced positive selection or to
have had relaxed functional constraints. If the alternative
model was accepted and if the dN/dS ratio of Hymenop-
tera was smaller than that of other lineages, we consid-
ered the genes of Hymenoptera to have experienced
purifying selection.

b. Codon site-specific positive selection test

To test for positive selection of each codon site in Hy-
menoptera, we used the branch-site model in the PAML
package version 4.8 [43]. The ancestral node of Hymen-
optera was labeled as the test group for the positive se-
lection test on mitochondrial, nuclear OXPHOS and
nuclear non-OXPHOS genes. An example of the
branch-site test control file is provided as supplementary
file (Additional file 3). Fisher’s exact test was used to test
the differences in the number of sites under positive se-
lection between nuclear OXPHOS and nuclear non-
OXPHOS genes.
We also used the mixed effects model of evolution

(MEME) test [44] implemented in HyPhy (version
2.220150825beta MP) [45] to identify codon sites under
episodic positive selection. As MEME does not require a
priori knowledge of lineages under potential positive se-
lection, and still had the same power as the PAML
branch-site model [46], we used MEME as an explora-
tive tool to identify sites under the positive selection in
mitochondrial and nuclear OXPHOS gene sequences.

c. Amino acid site-specific positive selection test

TreeSAAP version 3.2 [47] was used to test for posi-
tive selection at the amino acid level of mitochondrial
and nuclear OXPHOS genes. The program measures se-
lection on amino acids using 31 structural and biochem-
ical amino acid properties, such as hydropathy,
molecular weight, and polarity. Based on the significance
of their property changes, amino acid sites were sorted
into eight magnitude categories. Sites in categories ‘6’, ‘7’,
and ‘8’ have the most radical amino acid changes and
were considered to have been under positive selection.
Sites under positive selection found on the ancestral
node of Hymenoptera were used as the Hymenoptera-
specific sites under positive selection. IMPACT_S ver-
sion 1.0.0 [48] was used to summarize the location of
amino acid sites under positive selection from the Tree-
SAAP results.

Results
The amino acid substitution rate among insect orders
Using the sum of branch length between two species
in the RAxML phylogenetic tree based on the
concatenated sequence alignments as approximation
for the amino acid substitution rate and using the
two-cluster test in LINTREE [40], we found that Hy-
menoptera exhibited a higher amino acid substitution
rate in both mitochondrial genes (Z statistics = 2.20,
p-value <0.05) and nuclear OXPHOS genes (Z statis-
tics = 7.95, p-value <0.001) than the other three mega-
diverse insect orders. In contrast, Hymenoptera had a
lower substitution rate in nuclear non-OXPHOS
genes (Z statistics = 9.87, p-value <0.001) than the
other three insect orders. The general pattern of the
concatenated sequences was that the amino acid sub-
stitution rate of mitochondrial genes in Hymenoptera
(median = 2.12 ± 0.21) was 1.37 times higher than
Coleoptera (median = 1.55 ± 0.20), 1.31 times higher
than Diptera (median = 1.62 ± 0.04), and 1.27 times
higher than Lepidoptera (median = 1.67 ± 0.08) (Fig. 1
and Fig. 2). The amino acid substitution rate of nu-
clear OXPHOS genes in Hymenoptera (median = 1.09
± 0.06) was 1.2 times higher than that in Coleoptera
(median = 0.90 ± 0.06), 1.17 times higher than Diptera
(median = 0.93 ± 0.05), and 1.09 times higher than
Lepidoptera (median = 1.00 ± 0.02). On the other hand,
the amino acid substitution rate of nuclear non-
OXPHOS genes in Hymenoptera (median = 0.87 ±
0.01) was 1.08 times lower compared to Coleoptera
(median = 0.94 ± 0.06), 1.2 times lower than Diptera
(median = 1.04 ± 0.06) and 1.24 times lower than
Lepidoptera (median = 1.08 ± 0.05). On the level of in-
dividual genes, 10 out of 13 mitochondrial genes
showed a higher amino acid substitution rate in Hy-
menoptera than the orthologous genes in other insect
orders (Table 3). Out of the 23 nuclear OXPHOS
genes, 19 evolved faster in Hymenoptera than in the
other three insect orders.
We also tested the differences in evolutionary rates

among concatenated mitochondrial, nuclear OXPHOS
and nuclear non-OXPHOS genes in the same insect
order based on the terminal branches with the Wilcoxon
rank sum test. In Hymenoptera, mitochondrial
OXPHOS genes had a higher amino acid substitution
rate than nuclear OXPHOS genes (p-value = 0.012) and
nuclear non-OXPHOS genes (p-value = 0.012); nuclear
non-OXPHOS genes had a lower substitution rate than
mitochondrial OXPHOS genes (p-value = 0.012) and
than nuclear OXPHOS genes (p-value = 0.012). In Dip-
tera, nuclear non-OXPHOS genes had a higher amino
acid substitution rate than nuclear OXPHOS genes (p-
value = 0.047). Comparisons between gene groups in
other orders were not significant.
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Tests for the signature of positive selection on OXPHOS
genes
Among the 13 mitochondrial genes analyzed, only 2 had
a higher dN/dS ratio in Hymenoptera than in the three
other orders based on PAML branch test (Table 3).
PAML branch-site model, MEME, and TreeSAAP re-
vealed 0, 9 and 12 sites under positive selection, respect-
ively. None of these sites were detected by more than
one method.
Based on the results of the PAML branch test, 17 out

of 23 nuclear OXPHOS genes had elevated dN/dS ratios
in Hymenoptera compared to the other three insect or-
ders (Table 3, Additional file 4: Table S3). For the site-
specific positive selection test, 17 nuclear OXPHOS
genes revealed a total of 108 codon sites under positive

selection (Additional file 5: Table S4). A total of 55, 22,
and 42 codon sites (out of 4127 codon sites) were found
to be under positive selection by the PAML branch-site
model, by MEME, and by TreeSAAP, respectively. Ten
codon sites were found under positive selection by at
least two methods (Table 3, Additional file 5: Table S4).
Among the 1413 nuclear non-OXPHOS genes, 516
genes were found with positive selection with PAML
branch-site model. A total of 2823 codon sites (out of
343,228 codon sites) were found under positive selection
with PAML branch-site model.

Discussion
Interactions between mitochondrial and nuclear genes
have been implicated in a number of important
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Fig. 1 Phylogenetic trees based on concatenated amino acid alignments of (a) Mitochondrial OXPHOS genes, (b) Nuclear OXPHOS genes, and (c)
Nuclear non-OXPHOS genes. Species from each order are labelled in different colors (Hemiptera: green, Hymenoptera: blue, Coleoptera: red, Lepidoptera:
pink, Diptera: brown). Branch lengths are scaled to the average number of amino acid substitutions per site. Phylogenetic trees were reconstructed based
on the topology from Misof et al. [28] with RAxML version 8.2.3
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Fig. 2 The amino acid substitution rate among insect orders based on concatenated amino acid alignments of (a) Mitochondrial OXPHOS genes,
(b) Nuclear OXPHOS genes, and (c) Nuclear non-OXPHOS genes
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evolutionary processes, for example, establishing re-
productive isolation between species by giving rise to
genic incompatibilities and driving the evolution of
sex [21, 27, 49] . A common assertion is that these
interactions should couple the patterns of molecular
evolution between mitochondrial and nuclear
OXPHOS genes. However, it is not clear what mecha-
nisms are driving the observed elevated substitution
rate in nuclear OXPHOS genes. One leading hypoth-
esis is that these elevated rates may be a response to
selection from rapidly evolving mitochondrial genes
[19, 20]. To test this hypothesis, we compared the
evolutionary rate of nuclear OXPHOS and non-
OXPHOS genes in Hymenoptera, a lineage with rap-
idly evolving mitochondrial genes, to the genes in
three other holometabolous insect orders with more
slowly evolving mitochondrial genes (i.e. Coleoptera,
Diptera, and Lepidoptera). We leverage the rapid rate
of molecular evolution in the mitochondrial genome
of Hymenoptera to test for evidence of positive selec-
tion on the nuclear OXPHOS genes.

Hymenoptera exhibited a high amino acid substitution
rate in their nuclear OXPHOS genes
By comparing the amino acid sequences of OXPHOS
genes of Hymenoptera to those of other holometabolous
insects, we found that Hymenopterans exhibit a signifi-
cantly elevated amino acid substitution rate in their
mitochondrial and nuclear OXPHOS genes, but not in
their nuclear non-OXHPOS genes (Fig. 2). Our finding
is consistent with a previous study on Hymenoptera
[26], which noted an elevated amino acid substitution
rate in mitochondrial OXPHOS genes, but not in four
nuclear non-OXPHOS genes. By increasing the number
of nuclear non-OXPHOS genes to 1413, we demon-
strated that the lower rate of substitution in non-
OXPHOS genes was not due to a sampling artifact in
the previous study [26]. In this much larger set of genes,
we found the amino acid substitution patterns in nuclear
non-OXPHOS genes showed a lower substitution rate in
Hymenoptera compared to other insect orders. In
addition, we found that 19 of the representative 23 nu-
clear OXPHOS genes show an elevated amino acid sub-
stitution rate. This higher amino acid substitution rate
in nuclear OXPHOS genes is likely representative for
Hymenoptera as the nine hymenopterans have a
comprehensive phylogenetic coverage of the order (see
Peters et al. [50] for more information on their phylo-
genetic position within Hymenoptera).
The evolution of nuclear OXPHOS genes in Hymen-

optera shows a different pattern from the three other in-
sect orders, where nuclear OXPHOS genes evolve faster
than non-OXPHOS genes in Hymenoptera, but slower
than non-OXPHOS genes (Diptera) or similar in

substitution rates (Coleoptera and Lepidoptera). In the
nuclear genome, the evolution of OXPHOS genes could
be under both functional constraints and selection
pressure due to changes in the mitochondrial genome
[6, 51]. If the selection pressure due to changes in
the mitochondrial genome is weak, as seemingly in
Diptera, Coleoptera and Lepidoptera, where the evo-
lutionary rates of mitochondrial genes are slower than
that in Hymenoptera, functional constraints would
play a major role. In contrast, if selection pressure
due to rapid changes in the mitochondrial genome is
strong, selection would play a more important role
than functional constraints.

Evidence of positive selection on nuclear OXPHOS genes
Since we found evidence of elevated rates of substitution
in nuclear OXPHOS genes of Hymenoptera, we used a
series of four tests to detect the signature of positive se-
lection in these genes. Applying the PAML branch
model test, we found that 17 out of 23 nuclear OXPHOS
genes had a higher dN/dS ratio in Hymenoptera than
the orthologous genes from the other insect orders
(Table 3, Additional file 4: Table S3). In principle, a high
dN/dS ratio could be caused by either positive selection
or relaxed functional constraints and it is difficult to dis-
tinguish between these two possibilities by looking ex-
clusively at the dN/dS ratio. Both positive selection and
relaxed functional constraints can lead to the fixation of
non-synonymous mutations in a population [6, 19, 27].
Positive selection is more likely to lead to the fixation of
beneficial non-synonymous mutations, whereas relaxed
functional constraints are expected to decrease the de-
gree of purifying selection, which can lead to the fixation
of deleterious mutations. Given the importance of the
OXPHOS system for aerobic organisms, nuclear
OXPHOS genes are less likely under relaxed functional
constraints [27, 52].
We used the PAML branch-site test, MEME and Tree-

SAAP to identify codon or amino acid sites that have
been under positive selection. These approaches are
based on different models. The branch-site model of
PAML tests for codon sites under positive selection in
specific branches with a prior assumption of which
branches are under selection [43]. The MEME test is
based on a mixed-effect model, which tests for codon
sites under positive selection in all branches without an
a prior expectation [44]. TreeSAAP tests for amino acid
sites under positive selection based on the structural and
biochemical properties of amino acids [47]. The branch-
site model of PAML found the highest number of codon
or amino acid sites under positive selection. MEME
found the lowest number of sites under positive selec-
tion. Although these three approaches are based on dif-
ferent models, ten sites were detected as under positive
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selection by at least two approaches. The proportion of
codon sites under positive selection in Hymenoptera de-
tected with PAML branch-site model is significantly
higher (p-value <0.001 with Fisher’s exact test) in nu-
clear OXPHOS genes (1.33%) than in nuclear non-
OXPHOS genes (0.82%). Overall, we found evidence of
positive selection at a few specific amino acid positions
in nuclear OXPHOS genes (details about sites under posi-
tive selection can be found in Additional file 5: Table S4).
The three genes (ND-39, ND24, and ND-42 gene) with
the highest number of sites under positive selection are
known to have functional importance. ND-39 is relevant
to mitochondrial-nuclear incompatibility among Nasonia
species [27]. Another interacting gene, ND-24, is a core
subunit of the OXPHOS complex I, which binds and oxi-
dizes NADH [53]. In the ND-42 gene, a deleterious muta-
tion at a single amino acid site (Gln142Arg) is known to
disturb complex I assembly, potentially causing Leigh dis-
ease [54]. We found that an amino acid site immediately
adjacent to the deleterious locus linked to Leigh disease
shows evidence of positive selection in Hymenoptera
(Additional file 5: Table S4; Codon 106 in the codon
alignment).
Although there is evidence of positive selection based

on the elevated dN/dS ratio and codon sites under posi-
tive selection, the positive selection pattern is not con-
sistent with the observed elevated amino acid
substitution rate. In our results, there are nuclear
OXPHOS genes with a high amino acid substitution rate
that do not show a clear signature of positive selection,
such as the ATPsynγ gene and the ND-B14.5B gene. For
example, the substitution rate of the ND-B14.5B gene in
Hymenoptera is 1.4–2.2 times higher than the rate in
other insect orders, while the dN/dS ratio of this gene in
Hymenoptera is not significantly higher than that in
other insect orders. No specific sites in the ND-B14.5B
gene were found to be under positive selection in
Hymenoptera.
The inconsistent pattern between the amino acid sub-

stitution rate and the dN/dS ratio could be the conse-
quence of failure to detect positive selection. The
divergence time between Hymenoptera and the other
three insect orders is between 345 and 355 million years
[28, 55]. With this deep divergence time, nucleotide sub-
stitutions are likely highly saturated [56], making it diffi-
cult to detect positive selection. In addition, OXPHOS
genes are under strong purifying selection [27], and the
signal of episodic positive selection is difficult to detect
in a background of strong purifying selection. A long di-
vergence time and presence of strong purifying selection
make it difficult to conclude whether the observed high
amino acid substitution rate is indeed caused by positive
selection. Future studies on populations with short di-
vergence times could help detect positive selection

signals (if there are any) and to test the role of positive
selection in the evolution of the OXPHOS in Hymenop-
tera, for example, when studying populations of the
same species that differ in the substitution rate of their
mitochondrial genes [20].
Our study sheds light on the idea that the high amino

acid substitution rate in nuclear OXPHOS genes was
driven by positive selection in Hymenoptera. In fact, we
found that a small number of sites in nuclear OXPHOS
genes of Hymenoptera have evolved under positive se-
lection (Table 3). The source of positive selection could
be the high rate of amino acid substitution in the mito-
chondrial genome [27]. Based on our finding that only
nuclear OXPHOS genes (and not nuclear non-OXPHOS
genes) have elevated amino acid substitution rates, it is
less likely that small effective population sizes in Hy-
menoptera, resulting from a parasitoid life style [23]
and/or haplodiploidy [25], have caused the high amino
acid substitution rate in nuclear OXPHOS genes due to
drift, as both factors would have genome-wide effect on
substitution rates.

Conclusions
In this study, we used published transcriptome sequence
data to provide insights into the evolution of OXPHOS
genes in the four mega-diverse insect orders Coleoptera,
Diptera, Hymenoptera, and Lepidoptera. We found that
mitochondrial and nuclear OXPHOS genes of Hymen-
optera exhibited significant higher average substitution
rates than the genes of other insect orders. The higher
substitution rate in nuclear OXPHOS genes of Hymen-
optera could be, at least in part, explained by positive se-
lection. However, positive selection alone cannot explain
the elevated rate of molecular evolution of nuclear
OXPHOS genes in Hymenoptera.
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positive selection in OXPHOS genes based on the PAML branch-site
model, MEME and TreeSAAP. (XLSX 11 kb)
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