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Abstract

Background: Gene trees carry important information about specific evolutionary patterns which characterize the
evolution of the corresponding gene families. However, a reliable species consensus tree cannot be inferred from a
multiple sequence alignment of a single gene family or from the concatenation of alignments corresponding to gene
families having different evolutionary histories. These evolutionary histories can be quite different due to horizontal
transfer events or to ancient gene duplications which cause the emergence of paralogs within a genome. Many
methods have been proposed to infer a single consensus tree from a collection of gene trees. Still, the application of
these tree merging methods can lead to the loss of specific evolutionary patterns which characterize some gene
families or some groups of gene families. Thus, the problem of inferring multiple consensus trees from a given set of
gene trees becomes relevant.

Results: We describe a new fast method for inferring multiple consensus trees from a given set of phylogenetic trees
(i.e. additive trees or X-trees) defined on the same set of species (i.e. objects or taxa). The traditional consensus
approach yields a single consensus tree. We use the popular k-medoids partitioning algorithm to divide a given set of
trees into several clusters of trees. We propose novel versions of the well-known Silhouette and Caliński-Harabasz
cluster validity indices that are adapted for tree clustering with k-medoids. The efficiency of the new method was
assessed using both synthetic and real data, such as a well-known phylogenetic dataset consisting of 47 gene trees
inferred for 14 archaeal organisms.

Conclusions: The method described here allows inference of multiple consensus trees from a given set of gene
trees. It can be used to identify groups of gene trees having similar intragroup and different intergroup evolutionary
histories. The main advantage of our method is that it is much faster than the existing tree clustering approaches,
while providing similar or better clustering results in most cases. This makes it particularly well suited for the analysis
of large genomic and phylogenetic datasets.

Keywords: Cluster validity index, Consensus tree, k-medoids, Phylogenetic tree, Robinson and Foulds topological
distance

Background
Various methods for computing a consensus tree for a
given set of phylogenetic trees have been proposed [1].
The most known types of consensus trees are the strict
consensus tree, the majority consensus tree and the
extended majority consensus tree [1, 2]. The strict con-
sensus tree contains only the edges that are common to
all input trees. The majority consensus tree contains the
edges that are present in more than 50% of the input
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trees, although higher percentages may also be consid-
ered. According to the extended majority rule, the con-
sensus tree includes all of the majority edges to which
compatible residual edges are added gradually, starting
with the most frequent ones. Extended majority consen-
sus trees are the most frequently used consensus trees in
evolutionary biology because they are usually much better
resolved (i.e. have lower mean degree of internal nodes)
than strict and majority consensus trees [2].
The output of most conventional consensus tree algo-

rithms is a single consensus tree [1]. However, in many
practical situations it is much more appropriate to infer
several consensus trees. In biology, it is often risky to
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group phylogenetic trees corresponding to different sets
of genes. Each gene has its own evolutionary history
which can substantially differ from evolutionary histories
of other genes. For example, some individual genes or
gene clusters (e.g. operons) affected by specific horizon-
tal gene transfer events will display different evolutionary
patterns than the rest of genes under study [3–8]. The
evolutionary history of such genes or gene clusters will
be depicted by phylogenetic trees having different topolo-
gies from that of the species tree which represents the
evolution of genes that did not undergo gene transfers.
Furthermore, the homogeneity of a given set of genes can
be also affected by ancient duplication events causing the
emergence of paralogous alleles.
There are several computational tools for analyzing

and visualizing sets of incompatible phylogenetic trees,
including SplitsTree [9], Dendroscope [10] and DensiTree
[11]. These programs allow for inferring different kinds
of phylogenetic networks which can be viewed as alterna-
tives to multiple consensus trees. Holland et al. [12] were
among the first to discuss a consensus building approach
using splits network. Holland et al. compared gene trees
of yeast genomes and demonstrated that consensus net-
works can be useful to depict hidden contradictory signals
existing in species phylogenies.
Thus, the question whether a unique consensus tree

or multiple consensus trees best characterize a given
set of phylogenies arises as an alternative to phyloge-
netic network reconstruction approaches. If the given
phylogenies are topologically congruent, they should be
combined into a single consensus tree. However, if these
phylogenies encompass conflicting genetic signals, they
should be organized into multiple consensus trees, each
of which accounts for a specific evolutionary pattern
[13–15]. Figure 1 shows four phylogenetic trees T1, T2, T3
and T4 with seven leaves. Here, the solution consisting of
two majority-rule consensus trees, T12 and T34, seems to
be much more appropriate than the solution consisting of
a single majority consensus tree, T1234, i.e. a star tree here,
given by the traditional majority consensus approach.
In this paper we describe a new algorithm for determin-

ing clusters of homogeneous trees which can be combined
in order to infer multiple consensus trees. The idea of build-
ing multiple consensus trees was originally formulated
by Maddison [16] who found that consensus trees of
some subsets of a given set of trees may differ and that
they are usually better resolved than the consensus tree
of the whole set. Then, Stockham et al. [17] proposed
two variants of a tree clustering algorithm based on k-
means, which were meant to infer a set of strict consensus
trees (called characteristic trees) minimizing the informa-
tion loss. However, these methods were very expensive in
terms of the running time because the consensus trees had
to be determined for each set of clusters in all intermediate

partitioning solutions tested by k-means. Bonnard et al.
[13] described a method, called Multipolar Consensus,
to display all the splits of a given set of phylogenetic
trees having a support above a predefined threshold,
using a minimum possible number of consensus trees.
The authors indicated that biologically relevant secondary
signals, which would be normally absent in a classical con-
sensus tree, can be captured by the Multipolar Consensus
method thus providing a convenient exploratory tool for
phylogenetic analysis. This method allows one to display
more secondary evolutionary signals than it is proposed
by the extended majority rule consensus without making
possible arbitrary choices which are usually made in this
consensus method. In his recent paper, Guénoche [14] has
presented a method for partitioning phylogenetic trees
into one cluster (K = 1, when given gene trees are homo-
geneous) or several clusters (K > 1, when given gene trees
are divergent). A generalized partition score, computed
over a set of tree partitions, is calculated by the Guénoche
method in order to determine the number of clusters, K,
in which a given set of gene trees should be partitioned.
Guénoche validated his method on both simulated data,
i.e. random sets of trees organized in different topologi-
cal groups, and real data, i.e. a set of non homogeneous
gene trees of 30 E. coli strains assumed to be affected
by horizontal gene transfers. The MCT (Multiple Con-
sensus Trees) program developed by the author remains
one of the rare pieces of software for inferring multiple
consensus trees, available for the research community.
We will describe a new tree clustering method that

relies on specific versions of the Silhouette (SH) [18] and
Caliński-Harabasz (CH) [19] indices adapted for tree clus-
tering with k-medoids. These cluster validity indices will
be used to determine the best partitioning obtained over
multiple random starts of k-medoids [20] when the num-
ber of clusters is fixed and then to select the optimal
number of clusters for a given set of trees.

Methods
K-medoids algorithm adapted for tree clustering
A phylogenetic tree is an unrooted leaf-labeled tree in
which each internal node, representing an ancestor of
contemporary species, has at least two children and all
leaves, representing contemporary species, have different
labels [2, 21, 22]. Our algorithm takes as input a set of
phylogenetic trees � defined on the same set of leaves
and returns as output one or several consensus trees. Each
consensus tree represents a subset (i.e. group, class or
cluster) of trees from �. For each cluster identified, the
algorithm returns a list of its elements (i.e. phylogenetic
trees) and the corresponding consensus tree. The output
is also accompanied by some statistics (e.g. the value of
the selected cluster validity index). Our method uses a
version of the popular k-medoids algorithm suitable for
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Fig. 1 Four phylogenetic trees T1, T2, T3 and T4 defined on the same set of seven leaves. Their majority-rule consensus tree is a star tree T1234. The
majority-rule consensus trees, T12 and T34, constructed for the pairs of topologically close trees: T1 and T2, and T3 and T4, respectively

tree clustering. The k-medoids algorithm [20] is a cluster-
ing method which can be viewed as a robust version of
the popular k-means algorithm. The k-medoids algorithm
divides N elements (i.e. phylogenetic trees in our case)
into K clusters using the cluster centers (i.e. the medoids)
which belong to the set of original elements (i.e. original
trees from � in our case). The medoid of a given clus-
ter is chosen to minimize the overall distance to the other

elements of this cluster. The content of each cluster is
chosen to minimize the total intracluster distance. Gener-
ally, the most commonly used distances in the framework
of k-medoids are the Euclidean distance, the Manhattan
distance and the Minkowski distance.
Several measures have been proposed to estimate the

distance between phylogenetic trees. The most popular
of them are the Robinson and Foulds (RF) topological
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distance [23], the quartet distance [24], the SPR (Subtree
Prune and Regraft) distance [25], the MAST (Maximum
Agreement Subtree) distance [26] and the bipartition dis-
similarity [3]. Unfortunately, the popular SPR distance,
which is often used to identify horizontal gene transfer
events, takes an exponential time to calculate. This is also
the case of theMAST distance which cannot be calculated
in polynomial time. The RF and the quartet distances are
topological distances which are among the quickest to cal-
culate. Indeed, both of them can be computed in O(n2)
when two Newick strings, representing two phylogenies
with n leaves defined on the same set of species, are con-
sidered. Moreover, Barthélemy and McMorris [27] have
shown that the majority consensus tree of a set of trees is a
median tree of this set in the sense of the RF distance [27].
Thus, the RF topological distance seems to be an appro-
priate distance to be used within k-means or k-medoids
algorithms adapted for phylogenetic tree clustering. In our
work, we define the median tree as a tree based on the
RF distance. It is worth noting that one could also use
an alternative type of median trees, those based on the
SPR distance [28], to infer SPR-distance-based multiple
consensus trees. For instance, Bruen and Bryant showed
that the maximum parsimony tree can be viewed as a
type of median consensus tree in the sense of the SPR
distance.
The Robinson and Foulds distance [14, 23, 29, 30]

between two trees is a well-known distance used in com-
putational biology to compare the topologies of two phy-
logenetic trees defined on the same set of species. The
Robinson and Foulds distance is a topological distance. It
does not take into account the lengths of the tree edges.
The time complexity of a typical implementation of

the k-medoids algorithm is O
(
K × (N − K)2 × i × M

)
,

where K is the number of clusters, i is the number of
iterations in k-medoids and M is the number of variables
characterizing each of the N objects. One of the advan-
tages of our new algorithm based on the RF distance is
that it does not need to recompute the consensus trees
for intermediate clusters of trees. Instead, it estimates the
quality of each intermediate clustering using an approx-
imate formula. This allows a much faster partitioning of
a given set of phylogenetic trees into K clusters without
losing the quality of the obtained consensus trees.
In the case of tree clustering using k-means, the objec-

tive function to be minimized can be defined as follows:

OF =
K∑

k=1

Nk∑

i=1
RF

(
Tmaj
k ,Tki

)
, (1)

where K is the number of clusters, Nk is the number of
trees in cluster k, RF is the Robinson and Foulds topo-
logical distance between two phylogenetic trees with n

leaves, Tki is the tree i of cluster k and Tmaj
k is the majority

rule consensus tree of cluster k. Still, the computation of the
majority rule consensus tree or of the extended majority
rule consensus tree is time-consuming. The time com-
plexity of the method computing the majority or the
extendedmajority rule consensus tree isO

(
n2 + nN2) [2],

where N is the number of trees and n is the number
of leaves in each tree. Jansson et al. [31] have recently
proposed a number of deterministic algorithms for con-
structing the majority rule consensus tree and some of its
variants. The authors presented the algorithms running
in O

(
nN × logN

)
time - for a majority rule consensus

tree, in O(nN) time - for a loose consensus tree, and
in O

(
n2N

)
time - for a greedy consensus tree. How-

ever, if the trees are defined by their Newick strings, as
it is typically done in evolutionary biology [32], one will
need a conversion program to transform each Newick
string into the format required by the algorithms of
Jansson et al.
Stockham et al. [17] proposed two variants of the

popular k-means algorithm to infer a set of strict con-
sensus trees (called characteristic trees) that minimize
the loss information. However, the approach of Stock-
ham et al. seems to be very expensive in terms of the
running time because in their approach the consen-
sus trees are determined for each set of clusters in all
intermediate partitioning solutions tested by k-means.
We present a new algorithm that does not need to
recompute the consensus trees at each of its iterations.
The time complexity of a straightforward tree parti-
tioning algorithm, such as the algorithm of Stockham
et al. [17] based on k-means, which recomputes the con-
sensus trees after each basic k-means operation consisting
of relocating an object (i.e. tree) from one cluster to
another and then in reassessing the value of the objective
function (Formula 1), isO

(
K × n × (

n + N2) × i
)
.

We propose to use the following approximate formula,
based on the properties of k-medoids:

OFmed =
K∑

k=1

Nk∑

i=1
RF

(
Tm
k ,Tki

)
, (2)

where Tm
k is the medoid tree of cluster k. The medoid

tree Tm
k of cluster k is the tree belonging to cluster k

that minimizes the sum of RF distances between it and
all other trees in k. By contrast with the k-means-based
approach, we do not need to compute in our algorithm
cluster centroids or majority consensus trees of clus-
ters. Using Formula 2, we reduce the time complexity
of the method to O

(
nN2 + K × (N − K)2 × i

)
, where

O
(
nN2) is the time complexity of precalculating the

matrix of pairwise RF distances of size (N×N) between all
trees in �.
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Silhouette cluster validity index adapted for tree clustering
with k-medoids
The first cluster validity index we consider in this study
is the Silhouette width (SH) [18]. This index assesses the
average rate of similarity between the objects belonging to
the same cluster (i.e. a cohesion function) versus the rate
of similarity between the objects of different clusters (i.e.
a separation function). The Silhouette width for cluster k
is defined as follows:

sh(k) = 1
Nk

⎡

⎣
Nk∑

i=1

b(i) − a(i)
max(a(i), b(i))

⎤

⎦ , (3)

where Nk is the number of elements (i.e. trees) in cluster
k, a(i) is the average distance between the element i
and all other elements of k and b(i) is the smallest of
all distances between the element i of cluster k and the
elements in the other clusters (i.e. those different from k).
The optimal number of clusters corresponds to the high-
est value of Silhouette.

The following equations for calculating a(i) and b(i) can
be used when clustering trees. The formula for a(i) is as
follows:

a(i) =
∑Nk

j=1 RF
(
Tki,Tkj

)

Nk
, (4)

where Tki is the tree i of cluster k and Tkj is the tree j of
cluster k. The formula for b(i) is as follows:

b(i) = min
1≤k′≤K , and k′ �=k

∑Nk′
j=1 RF

(
Tki,Tk′j

)

Nk′
, (5)

where Tk′j is the tree j of cluster k′ and Nk′ is the number
of trees in cluster k′.
Finally, the optimal number of clustersK corresponds to

themaximum average Silhouette width, SH(K), defined as
follows:

SH(K) =
K∑

k=1
[sh(k)] /K . (6)

Caliński-Harabasz cluster validity index adapted for tree
clustering with k-medoids
The second cluster validity index we consider here is the
Caliński-Harabasz index (CH) [19]. This criterion is a
ratio between the overall between-cluster distance and the
overall within-cluster distance, calculated by taking into
account the number of degrees of freedom. The exact
formula for the CH computation is as follows:

CH = SSB
SSW

× N − K
K − 1

, (7)

where SSW is the overall within-cluster distance involv-
ing the elements of the same cluster, SSB is the overall

between-cluster distance involving the elements of dif-
ferent clusters, K is the number of clusters and N is
the number of elements. The optimal number of clusters
corresponds to the maximum of CH.
The traditional formula for calculating the overall

within-cluster variance, SSW , is as follows:

SSW =
K∑

k=1

∑

y∈Ck

‖y − mk‖2, (8)

where y is an element of cluster Ck , mk is the centroid of
cluster k and ‖y−mk‖2 is the Euclidean distance (L2 norm)
between y andmk .
The traditional formula for calculating the overall

between-cluster variance, SSB, is as follows:

SSB =
K∑

k=1
Nk‖mk − m‖2, (9)

where Nk is the number of elements in cluster k, m is the
overall mean of the sample data and ‖mk − m‖2 is the
Euclidean distance between mk and m. Good clusterings
have a large overall between-cluster distance (SSB) and a
small overall within-cluster distance (SSW ).
Clearly, we cannot use the Euclidean distance when

clustering trees [33]. The Robinson and Foulds topological
distance (RF) has been used instead. Namely, the follow-
ing formulas for the overall within-cluster and between-
cluster distances were used in our study:

SSW =
K∑

k=1

Nk∑

i=1
RF

(
Tm
k ,Tki

)
, and (10)

SSB =
K∑

k=1
Nk × RF

(
Tm
k ,Tm)

, (11)

where Tm
k is the medoid tree of cluster k, Tki is the tree i

of cluster k and Tm is the medoid tree of the sample data.

Adjusted Rand index
The quality of clustering results was evaluated by using
the Adjusted Rand Index (ARI) [34–36]. The values ofARI
are located in the interval [-1; 1]. When two partitions
are exactly the same, the corresponding value of ARI is 1.
This popular index is the corrected for chance version
of the Rand index [37, 38]. ARI is often used in simula-
tions to compare the known original partitions with those
generated by methods under study.
Given a set of n objects and two partitions of these

objects, namely X = X1,X2, . . . ,Xr with r clusters and
Y = Y1,Y2, . . . ,Ys with s clusters, the overlap between
X and Y can be summarized using a contingency matrix[
nij

]
, where each entry nij denotes the number of objects

in common between partitions Xi and Yj.
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The ARI index is calculated using Formula (12):

ARI =
∑

ij
(nij
2
) −

[∑
i
(ai
2
) ∑

j
(bj
2
)]

/
(n
2
)

1
2

[∑
i
(ai
2
) + ∑

j
(bj
2
)] −

[∑
i
(ai
2
) ∑

j
(bj
2
)]

/
(n
2
) ,

(12)

where nij = |Xi ∩ Yj|, ai = ∑s
j=1 |Xi ∩ Yj| and bj =

∑r
i=1 |Xi ∩ Yj|, and Xi and Yj are the sets of objects in

clusters i and j, respectively.

Results
Simulation design
We tested our new algorithm for computing multiple con-
sensus trees using the two following simulation protocols.
Our first simulation included two main steps. During

the first step, we randomly generated a species phyloge-
netic tree (i.e. first consensus tree here) T1 with n leaves
using the HybridSim [39] program. Then, using the same
program, we generated K − 1 other consensus trees,
T2, . . . ,TK with n leaves, each of which differed from T1
by a specified number of hybridization events (the value
of the hybridization rate parameter in the HybridSim pro-
gram varied from 1 to 4 in our simulation; it was drawn
randomly using a uniform distribution). In our first simu-
lation, the number of clusters, K, ranged from 2 to 10 (see
Figs. 2, 3 and 4), while the number of tree leaves, n, was
taking the values 8, 16, 32 and 64 (see Fig. 3).
The HybridSim program developed byWoodhams et al.

[39] allows generation of phylogenies in the presence of
hybridization and horizontal gene transfer events. This
program can generate trees differing from each other by a
specified number of coalescence/incomplete lineage sort-
ing producing patterns of incongruence across gene trees.
In our simulations with HybridSim, we varied the values
of the hybridization rate (as indicated above) and the coa-
lescence rate (as indicated below) parameters. The rest

Fig. 2 Classification performances of the four versions of our
k-medoids tree clustering algorithm in terms of ARI with respect to
the number of clusters, ranging from 2 to 10. The four tested versions
of our algorithm were those based on: 1) SH with RF (�), 2) CHwith RF
(×), 3) SH with RF squared (�) and 4) CH with RF squared (�). The
coalescence rate parameter in the HybridSim program was fixed to 5
in this simulation. The presented results are the averages taken over
all considered numbers of tree leaves

of parameters used in our simulations were the default
parameters of HybridSim.
During the second step of the first simulation, for each

consensus phylogenetic tree Ti (i = 1, . . . , K) represent-
ing cluster i, we generated a set of 100 trees belonging
to cluster i using a specified value of the coalescence
rate parameter in HybridSim. In our study, the value of
this coalescence parameter, introducing noise into gene
phylogenies, varied between 10 (low noise) and 1 (high
noise). Thus, each element T of cluster i differed from the
consensus tree Ti of this cluster by a certain (fixed) coales-
cence degree. The simulation results presented in Figs. 2
and 3 correspond to the case in which the coalescence
rate parameter in HybridSim was fixed to 5. Figure 4 illus-
trates how the methods’ results change with respect to the
change in the coalescence parameter. The number of clus-
ters, K, was assumed to be known in this simulation. The
strategies based on both the squared and non-squared RF
distances (used in Formula 2) were evaluated.
In the second simulation, we compared our algorithm

based on the Silhouette index and the non-squared Robin-
son and Foulds distance (Formula 2) with the traditional
approach based on the recalculation of majority-rule con-
sensus trees, representing the cluster centroids, after each
basic operation of k-means (a variant of Formula 1 using
the squared RF distance, as suggested by Stockham et al.
[17]). This comparison was performed in terms of qual-
ity of clustering results returned by competing methods
(Fig. 5a and b) and of running time (Fig. 5c and d). The
number of tree leaves, n, in this second simulation was
equal to: 8, 16, 32, 64 and 128. The number of clusters, K,
in the second simulation was equal to 5 and the coales-
cence rate parameter in the HybridSim program was fixed
to 5 in this simulation. Once again, 100 different datasets
were generated for each parameter combination and the
number of clusters was assumed to be known. Our simu-
lations were carried out using a 64-bit computer equipped
with an Intel i5-4690T CPU (2.5 GHz) and 8 Gb of RAM.
The results of the first simulation are illustrated in

Figs. 2, 3 and 4. The presented results are the averages
taken over all combinations of our parameters (see the
“Simulation study” section), except the featured one (i.e.
the number of clusters in Fig. 2, the number of tree leaves
in Fig. 3 and the coalescence rate in Fig. 4). The obtained
results are discussed later on in the “Discussion” section.

Clustering trees of 47 ribosomal proteins of Archaea
We applied the new algorithm to analyze the evolution
of 47 ribosomal proteins of 14 organisms of Archaea,
including 11 species of Euryarchaeota and 3 species of
Crenarchaeota. These data were originally studied by
Matte-Tailliez et al. (see Fig. 1a in [4] or Fig. 6a in our
paper). Matte-Tailliez et al. inferred a single species phy-
logenetic tree after the concatenation of the considered
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a b

Fig. 3 Classification performances of the four versions of our k-medoids tree clustering algorithm in terms of ARI with respect to the number of tree
leaves: a the case of 2 to 5 clusters and b the case of 6 to 10 clusters. The four tested versions of our algorithm were based on: 1) SH with RF (�), 2)
CH with RF (×), 3) SH with RF squared (�) and 4) CH with RF squared (�). The coalescence rate parameter in the HybridSim program was fixed to 5 in
this simulation. The presented results are the averages taken over all considered numbers of clusters

protein sequences (see Fig. 6a). However, the evolution of
each of these proteins can be represented by its own phy-
logenetic tree. The cluster analysis of these trees can tell
us howmany different evolutionary scenarios characterize
the evolution of these sequences (i.e. howmany clusters of
trees exist in the protein tree dataset). We first considered
the complete set of 52 multiple sequence alignments of
archaeal ribosomal proteins studied byMatte-Tailliez et al.
We selected for our analysis 47 of these 52 alignments, i.e.
those including the data for the same 14 archaeal organ-
isms. The 5 remaining alignments were incomplete (i.e.
they included 12 or 13 organisms only). Using the 47
complete alignments, we inferred 47 phylogenetic trees
by means of the PHYML method [40] (these alignments
and trees are available at: https://github.com/TahiriNadia/
CKMedoidsTreeClustering/).
First, we carried out the version of our k-medoids tree

clustering algorithm based on the SH index (Formulas 3
to 6) and the non-squared RF distance in order to infer
a partitioning of the obtained set of 47 trees. The maxi-
mum of SH was attained with five clusters (K = 5) which

correspond to five different horizontal gene transfer sce-
narios presented in Fig. 6 (panels b to f).
The first cluster contained 11 trees, the second 4 trees,

the third 20 trees, the fourth 11 trees and the fifth 1 tree.
We inferred the extended majority consensus trees, SH1,
SH2, SH3, SH4 and SH5, for these five clusters of trees.
Afterwards, using the gene transfer detection algorithm
by Boc et al. [3], we identified the scenarios of horizon-
tal gene transfer events which reconcile the species tree
(Fig. 6a) and each of the obtained consensus trees, SH1
to SH5. In the end of the tree reconciliation process, con-
sisting of SPR moves (corresponding to horizontal gene
transfers) of clusters of the species tree, the transformed
topology of the species tree becomes identical to that of
the gene tree. The version of the algorithm available on
the T-Rex web site [41] was used in our computations.
Second, we carried out the version of our k-medoids

tree clustering algorithm based on the CH index (Formu-
las 7 to 11) and the non-squared RF distance to classify
the same set of 47 gene trees. The maximum of CH was
attained with three clusters (K = 3). Here, the first clus-

a b

Fig. 4 Classification performances of the four tested versions of our k-medoids tree clustering algorithm in terms of ARI with respect to the
coalescence rate: a the case of 2 to 5 clusters and b the case of 6 to 10 clusters. The four tested versions of our algorithm were based on: 1) SH with
RF (�), 2) CH with RF (×), 3) SH with RF squared (�) and 4) CH with RF squared (�). The coalescence rate parameter in the HybridSim program varied
from 10 to 1 in this simulation. The presented results are the averages taken over all considered numbers of clusters and all considered numbers of
tree leaves

https://github.com/TahiriNadia/CKMedoidsTreeClustering/
https://github.com/TahiriNadia/CKMedoidsTreeClustering/
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a b

c d

Fig. 5 Comparison of our algorithm (�) based on the k-medoids clustering, the non-squared RF distance and the SH cluster validity index to the
traditional approach (�) based on the k-means clustering, on the squared RF distance and on the recomputing the majority consensus trees within
k-means (Stockham et al. [17]). The coalescence rate parameter in the HybridSim program was fixed to 5 in this simulation. The comparison was
made in terms of ARI (panels a and b) and the running time (measured in seconds) of the methods (panels c and d) with respect to the number of
tree leaves and trees

ter contained 25 trees, the second 14 trees and the third
8 trees. We then inferred the extended majority consen-
sus trees, CH1, CH2 and CH3, for these clusters of trees.
Similarly to the case of SH, we identified the scenarios of
horizontal gene transfer events that reconcile the species
tree (Fig. 6a) and each of the consensus trees CH1, CH2
and CH3 (see Fig. 7, panels a to c).

Discussion
Simulation study
The curves depicted in Fig. 2 indicate that the clustering
quality provided by our algorithm depends on the number
of clusters, the cluster validity index (SH or CH) and the
selected objective function (i.e. the non-squared RF dis-
tance or the squared RF distance in Formula 2). Obviously,
we were not able to address the case of homogeneous data
(i.e. K = 1) in this study because the SH and CH cluster
validity indices are not adapted for the case of one clus-
ter only. The ARI results improve noticeably when the
number of clusters, K, increases from 2 to 6 and stabi-
lize starting from 6 clusters. Also, the strategy based on
the SH cluster validity index and the non-squared RF dis-
tance outperforms the three other competing strategies
regardless of the number of clusters.
Figure 3 shows a slight increase in the ARI values as the

number of tree leaves increases. Once again, the scores of
ARI for the SH criterion are higher than those for the CH
criterion and the methods based on the non-squared RF

distance are slightly more efficient than those based on
the squared RF metric. One can also observe that the ARI
scores become more stable when the number of clusters
varies between 6 and 10 (Fig. 3b) compared to the case
when it varies between 2 and 5 (Fig. 3a).
Figure 4 shows that the CH index is more affected by

coalescence (i.e. noise) than SH when clustering trees
using k-medoids. Once again, one can notice that both
versions of our algorithm, based on SH and CH, yield bet-
ter results when the non-squared RF distance is used in
Formula 2 instead of its squared counterpart. It is worth
noting that Stockham et al. [17] used the squared RF dis-
tance in their algorithm. Given these results, our second
simulation (see Fig. 5) was conducted with the algorithm
based on the Silhouette index and the non-squared Robin-
son and Foulds distance.
The results of the second simulation are shown in Fig. 5.

The curves presented in Fig. 5 (a and b) indicate that the
new algorithm based on Formulas 2 to 6 works better than
the straightforward tree clustering approach by Stockham
et al. [17] in terms of the clustering quality when the num-
ber of tree leaves varies from 8 to 32, but is slightly less
efficient than the approach by Stockham et al. when the
number of tree leaves varies from 64 to 128. However, our
algorithm is by far the best method in terms of the run-
ning time for both simulation parameters considered: the
number of tree leaves (Fig. 5c) and the number of trees
(Fig. 5d). These results suggest that our new algorithm
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a b

e f
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Fig. 6 a Species tree for the Archaea dataset and five consensus horizontal gene transfer scenarios (panels b to f) obtained for 47 protein trees,
originally studied by Matte-Tailliez et al. [4], using the SH cluster validity index and the non-squared RF distance in the k-medoids tree clustering
algorithm

is well suited for the analysis of large phylogenetic
datasets.

Analysis of clustering results obtained for 47 trees of
ribosomal proteins of Archaea
Horizontal gene transfer scenarios found using the SH
index account for five different histories which character-
ize the evolution of the 47 ribosomal proteins considered.
Two transfers predicted for these data by Boc et al. (see

Fig. 6 in [3]), which are in agreement with the results of
Matte-Tailliez et al. [4] and Boc et al. 2013 [42], are present
in these five scenarios. Precisely, the transfers - SH3 − 2
(or its equivalent transfer SH5 − 4) and SH5 − 1 - have
been predicted by Boc et al. 2010 (see Fig. 6 in [3]), the
transfers - SH3−2 (or its equivalent transfer SH5−4) and
SH3 − 1 - have been predicted by Boc et al. 2013 (see Fig.
2b in [42]). Finally, the transfers - SH1 − 1 (or its equiva-
lent transfers SH2 − 2 and SH4 − 1), SH5 − 1, SH3 − 2
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a

b

c

Fig. 7 Three consensus horizontal gene transfer scenarios (panels a to
c) obtained for 47 protein trees, originally studied by Matte-Tailliez
et al. [4], using the CH cluster validity index and the non-squared RF
distance in the k-medoids tree clustering algorithm

(or its equivalent transfer SH5− 4), SH2− 1, SH4− 3 and
SH4 − 2 - have been predicted by Boc et al. 2013 (see Fig.
3 in [42]) as partial horizontal gene transfers (i.e. transfers
leading to the formation of chimeric genes composed of
portions of two or more coding sequences; see [43]).

We also used the MCT program by Guénoche [14]
(Multiple Consensus Trees) to analyze this Archaea
dataset. The average linkage hierarchical algorithm and
the Robinson and Foulds distance were the parameters
which we selected in MCT. We compared our consensus
trees of classes with the consensus trees found by the algo-
rithm by Guénoche[14]. For example for K=5 (this was
the optimal number of clusters found using our algorithm
with the SH index), the MCT program returned consen-
sus gene trees whose topologies led to the horizontal gene
transfers SH2 − 1, SH2 − 3, SH4 − 2 and SH4 − 3 (see
Fig. 6).
Horizontal gene transfer scenarios found using the CH

index account for three different evolutionary histories of
the 47 ribosomal proteins under examination. Here, the
transfer - CH2− 1 - has been predicted by Boc et al. 2010
(see Fig. 6 in [3]), the transfer - CH2 − 2 - has been pre-
dicted by Boc et al. 2013 (see Fig. 2b in [42]), and finally
the transfers -CH1−1 (or its equivalent transferCH3−1),
CH1 − 2, CH1 − 3, CH2 − 1, CH3 − 2 and CH3 − 4 -
have been predicted by Boc et al. 2013 as partial horizontal
gene transfer events (see Fig. 3 in [42]). Interestingly, all
the transfers found in the horizontal gene transfer scenar-
ios shown in Fig. 7 (a-c) can be found in the gene transfer
scenarios presented in Fig. 6 (b-f).
Finally, we ran the MCT program with K=3 (this was

the optimal number of clusters found using our algorithm
with the CH index) and compared the obtained consen-
sus trees with those found by our method. The consensus
trees found by MCT in this case allowed for four horizon-
tal gene transfers which were equivalent to the transfers
CH1−2, CH1−3, CH3−2 and CH3−3 (see Fig. 7) found
by our algorithm with the CH index.
Still using the horizontal gene transfer detection algo-

rithm by Boc et al. [3], we found scenarios of gene trans-
fer events reconciling the species tree (Fig. 7a) and the
obtained consensus trees which play the role of gene trees
in this context. The overall horizontal gene transfer results
comparing the frequencies of the intragroup and inter-
group gene transfers found by our algorithm using the SH
and CH indices are reported Table 1. They suggest that
gene transfers have been more frequent within the species
of the same phylum than between the species of different
phyla (i.e. Crenarchaeota and Euryarchaeota).

Conclusions
In this article we described a new algorithm for parti-
tioning a set of phylogenetic trees into several clusters in
order to infer multiple consensus trees.We presented new
formulas allowing for using the popular Silhouette and
Caliński-Harabasz cluster validity indices as well as the
Robinson and Foulds topological distance in the frame-
work of tree clustering based on the popular k-medoids
algorithm. The new algorithm can be used to address a
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Table 1 Gene transfer statistics for 47 ribosomal protein trees
constructed for 14 species of Archaea obtained using the SH and
CH cluster validity indices and the non-squared RF distance in the
k-medoids tree clustering algorithm

Criterion Type of gene
transfer

Number of transfers
detected

Percentage of
transfers detected

SH
Intragroup 14 77.78%

Intergroup 4 22.22%

CH
Intragroup 9 90%

Intergroup 1 10%

The Crenarchaea group is composed of S. solfactaricus, A. pernix and P. aerophilum
species, and the Euryarchaeota group is composed of P. furiosus, P. abyssi, P.
horikoshii,M. jannashii,M. thermoautotrophicum, T. acidophilum, F. acidamanus, A.
fulgidus,M. barkeri, Halobacterium sp. and H. marismortui species

number of important issues in evolutionary biology, such
as the identification of genes having similar evolutionary
histories, e.g. those that have undergone the same hori-
zontal gene transfers or those that have been affected by
the same ancient duplication events. The presented algo-
rithm could be extended to the case where the input trees
have different, but mutually overlapping, sets of leaves.
In order to compute the Robinson and Foulds topolog-
ical distance between such trees, we could first reduce
them to the common set(s) of leaves. After this reduc-
tion, the Robinson and Foulds distance normalized by its
maximum value, which is 2n − 6 for two binary trees
with n leaves, could be used in Formulas 1 and 2 in
order to infer multiple consensus trees. Overall, good per-
formances achieved by the new algorithm in terms of
both clustering quality and running time makes it well
suited for the analysis of large genomic and phylogenetic
datasets. A C++ program, called KMTC (K-Medoids Tree
Clustering), implementing the discussed tree partition-
ing algorithm is freely available at: https://github.com/
TahiriNadia/CKMedoidsTreeClustering/.

Abbreviations
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