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Abstract

Background: Numerous studies have favored dispersal (colonization) over vicariance (past fragmentation) events to
explain eastern Asian-North American distribution patterns. In plants, however the disjunction between eastern Asia
and western North America has been rarely examined using the integration of phylogenetic, molecular dating, and
biogeographical methods. Meanwhile, the biogeographic patterns within eastern Asia remain poorly understood.
The goldthread genus Coptis Salisb. includes 15 species disjunctly distributed in North America, Japan, mainland
China, and Taiwan. We present a dated phylogeny for Coptis under the optimal clock model and infer its historical
biogeography by comparing different biogeographic models.

Results: The split of Coptis and Xanthorhiza Marshall occurred in the middle Miocene (ca. 1547 Ma). Coptis started
their diversification in the early late Miocene (ca. 9.55 Ma). A late Miocene vicariance event resulted in the eastern
Asian and western North American disjunction in the genus. Within eastern Asia, dispersals from mainland Asia to
Japan and from Japan to Taiwan occurred at ca. 4.85 Ma and at ca. 1.34 Ma, respectively.

Conclusions: Our analyses provide evidence that both vicariance and dispersal events have played important roles
in shaping the current distribution and endemism of Coptis, likely resulting from eustatic sea-level changes, mountain

formation processes and an increasing drier and cooler climate from the middle Miocene onwards.
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Background

Understanding the geographical deployment of biodiversity
through time is a central theme in historical biogeography
[1]. The disjunct distributions of closely related organisms
between East Asia and North America have fascinated
botanists and biogeographers for over a century and a half
[2-5]. In plants, biogeographic studies employing the inte-
gration of phylogenetic hypotheses, inference of ancestral
ranges, and estimates of divergence times have largely
focused on the classic eastern Asian and eastern North
American floristic disjunction pattern [5-8]. Few studies
have been devoted to investigate the eastern Asian and
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western North American disjunction [9, 10]. For these two
patterns, the Miocene has been regarded as an important
period, in which the Bering land bridge likely acted as a
major gateway [5, 11-13].

In the Northern Hemisphere, East Asia is a pivotal
biogeographic region as it presents high levels of plant spe-
cies diversity and endemism [14, 15]. Based on Takhtajan’s
[16] floristic system, southern East Asia belongs to the
Paleotropical Kingdom, whereas northern East Asia is part
of the Holarctic Kingdom (Fig. 1). Recent molecular phylo-
genetic studies also indicate that the Tertiary relict floras
within East Asia could be subdivided into two distinct
southern and northern regions [17, 18]. The former
consists of southern and southeastern China with extending
to the Himalayas, while the latter contains Japan, Korea,
and northeastern China. Besides, as a continental island
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Fig. 1 Geographic range of Coptis species. Doted lines in bold demarcate boundaries of the Holarctic and Paleotropical kingdoms according to
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adjacent to southeastern mainland China, the Ryukyus
Islands, and Philippines, the floristic source of Taiwan is
not clear [19-21]. To date, biogeographic relationships
among southern East Asia, northern East Asia and Taiwan
are far from understood.

The goldthread genus Coptis Salisb. (Ranunculales,
Ranunculaceae, Coptidoideae) is of pharmaceutical and
economical importance and is mainly distributed in the
warm temperate to the cold coniferous forests of eastern
Asia and North America [22, 23]. Among the 15 species
recognized by Tamura [22], C. trifolia (L.) Salisb. has the
widest distribution area (including Japan, the Kurile
Islands, Kamchatka, and North America), while the other
14 species are restricted to smaller regions: five species are
found in southern and southwestern mainland China with
extensions to the Himalayas, five in Japan, one in Taiwan,
and three in western North America (Fig. 1). Our recent
phylogenetic analysis based on three DNA markers
indicates that three western North American species of
the genus clustered with five mainland Chinese and two
Japanese species, and Taiwanese C. morii Hayata and three
Japanese species grouped together [23]. The fruits of
Coptis are dehiscent follicles [22] and seeds may be
autochorously dispersed owing to lacking obvious adapta-
tion to wind-dispersal. Seeds are not thereby expected to
disperse over long distance or oceanic barriers. Thus,
Coptis provides a remarkable opportunity for studying the

eastern Asian and western North American distribution
pattern, as well as the biogeographic relationships within
East Asia.

In this study, first we reconstruct a dated phylogeny for
Coptis based on six DNA markers, using a Bayesian relaxed
clock method. Using the resulting dated-phylogenetic
framework, we then infer the ancestral range evolution of
Coptis by comparing the relative fit of six biogeographic
models. Our study contributes to the knowledge on the
eastern Asian-western North American distribution pattern
and eastern Asian biogeography.

Methods

Samples and sequences

We sampled all 15 species of Coptis recognized by
Tamura [22]. Coptis and the monotypic Xanthorhiza
Marshall compose the subfamily Coptidoideae, which is
sister to a large clade containing the overwhelming
majority of genera of Ranunculaceae [24, 25]. Scoring
this large clade for geographic areas is a challenge. Here,
we only selected Xanthorhiza as the outgroup. The
sampled species and their GenBank accession numbers
are listed in Additional file 1: Table S1.

Six DNA markers, including five plastid (rbcL, truL
intron, trnL-F spacers, truD-trnT, and trnH-psbA) and one
nuclear (ITS) regions were used in this study. We gener-
ated new trnL sequence for C. japonica var. anemonifolia
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(Siebold & Zucc.) H. Ohba and truL and ITS for C. morii.
These two samples were collected in public land and no
specific permits were required. Other sequences were
obtained from GenBank. Laboratory procedures and
sequence handling followed Wang and Chen [26]. Three
difficult-to-align regions in trnL-F (encompassing 20
positions), two difficult-to-align regions in trnH-psbA (48
positions), and one difficult-to-align region in truD-trnT
(24 positions) were excluded from the analyses. The final
dataset included 4288 characters: rbcL, 1304 bp; trnl
intron, 465 bp; trnL-F, 426 bp; trnD-trnT, 1122 bp;
trnH-psbA, 289 bp; and ITS, 682 bp.

Phylogeny and divergence time estimates

We first conducted a likelihood ratio test [27] to determine
whether our sequence data were evolving in a clock-like
fashion. Because rate constancy along all branches of the
phylogeny was rejected (8 =146.63, df. = 14, P<0.0001),
we used a Bayesian relaxed clock methodology as imple-
mented in BEAST v1.8.2 [28] to generate a dated phylogeny
for Coptis. Based on our recent broader study of Ranuncu-
laceae [25], the split time between Coptis and Xanthorhiza
was estimated at ca. 16.23 Ma (95% highest posterior dens-
ity (HPD): 8.51-25.96) and was here used as a secondary
calibration point. Following the suggestion of Ho [29], we
assigned a prior normal distribution for the calibration, in
which a standard deviation of 2 was set.

Following the result of Baele et al. [30], we used Bayes
factors [31] calculated by marginal likelihoods derived
from path sampling (PS) [32] and stepping-stone sampling
(SS) [33] to compare the parametric fit of three clock
models: exponential, lognormal and random. Since our
sampling included all recognized species of Coptis and
Xanthorhiza, a birth-death tree prior was used.

For all BEAST analyses, data partitioning and nucleotide
substitution models were determined using PartitionFinder
2.1.1 [34, 35]. The Markov chain Monte Carlo chains were
run for 100 million generations, sampling every 10,000
generations. Tracer v1.6 [36] was used to assess appropriate
burn-in and the adequate effective sample size values (>
200). A burn-in of 25% was applied, and the maximum
clade credibility (MCC) tree with the mean ages and 95%
HPD intervals on nodes were conducted in TreeAnnotator
v1.8.2 (part of the BEAST package) and edited in FigTree
v.1.4.2 (http://beast.bio. ed.ac.uk/FigTree).

Ancestral range analysis

Based on the floristic characteristics [16, 18] and distribu-
tions of Coptis and Xanthorhiza [22], we coded five bio-
geographical areas (Fig. 1): (A) western North America,
(B) southern East Asia (including southern and southeast-
ern mainland China and the adjacent Himalayan region),
(C) Japan and adjacent islands (including the Kurile
Islands and Kamchatka), (D) Taiwan, and (E) eastern
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North America. The maximum range size was set to three,
as no extant species occurs in more than three biogeo-
graphical regions. Because the Bering land bridge was
periodically available for exchanges of plants between
eastern Asia and western North America until 3.5 Ma
[37-39], dispersal probabilities between pairs of areas
were specified for two separate time slices (Additional file
1: Table S2).

We used the R package BioGeoBEARS [40] for ancestral
range estimation (ARE) on the MCC tree from the BEAST
run under the optimal clock model and tree speciation
prior. Recently, Ree & Sanmartin [41] demonstrated that
the likelihood-based models with the +] parameter are
invalid because of errors in the estimation of likelihoods.
Here we compared the following three models of
biogeographical estimation in the maximum likelihood
(ML) framework: dispersal-extinction cladogenesis (DEC)
model [42], dispersal—vicariance analysis (DIVA) [43] and
BayArea model [44]. The fit for the different models was
assessed using the Akaike information criterion scores.

Results

Phylogeny and divergence times

We identified the random clock model as optimal for our
data (Table 1). The dated phylogenetic tree generated in
the BEAST analysis under the random clock model and
birth-death tree prior is indicated in Fig. 2. The relation-
ships among Coptis species are well resolved with strong
support (PP > 0.95) except for the node defining the sister
relationship of C. quinquefolia Miq. and C. morii. Coptis
contains two main clades (I and II). Based on our time
estimates (Fig. 2), the stem and crown ages of Coptis are
estimated at ca. 15.47 Ma (95% HPD: 11.47-19.37; node
1) and 9.55 Ma (95% HPD: 6.66—12.92; node 2), respect-
ively. Within clade I, three western North American
species clustered together and split from their eastern
Asian sister group at ca. 7.78 Ma (95% HPD: 5.16-10.52;

Table 1 Comparison of three clock models in BEAST analyses
via Bayes factors

Clock model  Marginal likelihood ~Exponential Lognormal Random

PS implementation
Exponential —8809.70 - 3744 -32.90
Lognormal  —882842 —37.44 - —70.34
Random —8793.25 32.90 70.34

SS implementation
Exponential —8810.29 - 3762 —33.72
Lognormal  —8829.10 -37.62 - -71.34
Random —8793.43 33.72 71.34 -

2In Bayes factor (BF) was calculated by marginal likelihoods derived from path
sampling (PS) and stepping-stone sampling (SS) implementations in BEAST. 2In
BF > 2.0 represents positive evidence, > 6.00 represents strong evidence,

and > 10.00 represents very strong evidence [31]
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Fig. 2 Dated phylogeny of Coptis inferred from the combined plastid
and nuclear data using BEAST under the random clock model and
birth-death tree prior. Gray bars represent 95% highest posterior
density intervals. Nodes of interests were marked as 1-5 in bold.

All nodes are strongly supported (PP > 0.95) except for one node

(in dashed line). Plio,, Pliocene; Plt, Pleistocene

node 3). Japanese C. japonica Makino and C. lutescens
Tamura are nested in the group of mainland Chinese
species and the split of these two Japanese species and
their sister group occurred at ca. 4.85 Ma (95% HPD:
2.98-6.80; node 4). Within clade II, Taiwanese C. morii
and Japanese C. quinquefolia were grouped together with
weak support (PP =0.73). The split time of C. morii and
C. quinquefolia was estimated to be at ca. 1.34 Ma (95%
HPD: 0.69-2.18; node 5).

Ancestral range estimation

A DIVALIKE was found to be the best-fitting model
(Table 2). The ARE for Coptis using BioGeoBEARS is indi-
cated in Fig. 3 and Additional file 2: Figure S1. Area prob-
abilities of all nodes are high except the root. Our ARE
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shows that the ancestral range of Coptis and Xanthorhiza
is unresolved but likely involved eastern North America,
western North America and Japan (node 1). The most
recent common ancestor of Coptis was likely distributed
in western North America, southern East Asia and Japan
(node 2). Within Coptis, two vicariance events and two
dispersal events were inferred at the species level (Fig. 3).

Discussion
The phylogenetic relationships in Coptis are highly consist-
ent with the results of Xiang et al. [23], but are usually
resolved with greater support for clades found therein. Our
results do not support Taiwanese C. morii as sister to three
Japanese species (C. ramose (Makino) Tamura, C. quinque-
folia and C. trifoliolata (Makino) Makino), and instead
suggest that C. morii is sister to C. quinquefolia, although
with moderate support (PP =0.71). Using the split age of
ca. 16.23 Ma (95% HPD: 8.51-25.96) between Coptis and
Xanthorhiza [25], we obtained a similar age estimate for
the split (ca. 15.47 Ma; 95% HPD: 11.47-19.37; Fig. 2).
BioGeoBEARS analyses indicate that the crown of Cop-
tis and Xanthorhiza most likely occurred in a widespread
area comprising North America and Japan (Fig. 3; node
1), although other somewhat less likely ARE are possible
(Additional file 2: Figure S1). The estimated age for the
split of these two genera highly coincides with the
mid-Miocene Climatic Optimum (MMCO; ~ 15-17 Mag;
Fig. 3) [45]. During this period, exchange of temperate
plants between East Asia and North America could occur
via the Bering land bridge [46]. Paleobotanical data
indicate that the mixed mesophytic forest of the early and
middle Miocene was continuous from Japan through
Alaska and into conterminous North America [47, 48].
The American west encompassing the Colorado Plateau,
Basin and Range, the High Plains, and the Rocky and
Sierra Mountains began to uplift rapidly by 20-15 Ma
[49]. A middle Miocene flora from Carson Pass in the
central Sierra Nevada suggests uplift of about 2300 m
since that time [50]. The uplift is a key factor in creating
an increasingly drier climate in the North American inter-
ior around that time [49, 51]. Paleobotanical evidence
suggests that by the middle Miocene the arid interior has
become an effective barrier to biotic interchange between
eastern and western North America [52, 53]. After the
MMCO, an increasingly drier climate, as well as global

Table 2 Comparison of the fit of three models of biogeographical range evolution and model-specific estimates for the different

parameters

Model LnL Parameter nb d e AlC AAIC AlCc AAIC-
DEC -24.06 2 0.03 1.00x 10" "2 5212 3.59 53.04 3.58
DIVALIKE —22.27 2 0.03 100%x 1072 4853 0 4946 0
BAYAREALIKE —28.77 2 0.04 104x 107" 61.55 13.02 5247 13.01

d =dispersal rate; e = extinction rate
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cooling (Fig. 3) [45], might thus have resulted in a vicari-
ance event responsible for the divergence of Coptis and
Xanthorhiza (node 1; Fig. 3).

After Coptis diverged from Xanthorhiza, a subsequent
dispersal from Japan to southern East Asia occurred in
the early late Miocene (9.55 Ma, 95% HPD: 6.66—12.92;
node 2). This time is markedly later than the time of the
opening of the Japan Sea (23-15 Ma), which separated
the Japanese Islands from the Northeast Asian margins
[54-56]. However, during the early late Miocene, a
marked drop of sea level occurred (Fig. 3) [57], which
might have resulted in East China Sea seafloor exposure
between the Eurasian mainland and the Japanese Archi-
pelago. Hence, Coptis could have migrated westward
into continental Asia via this land bridge. Subsequent
sea-level rise might have resulted in the interruption of
population exchange of the genus between the Asian
mainland and the Japanese Islands. Accordingly, Coptis
diverged into two clades (I and II).

In clade I, one vicariance episode happened between
western North America and southern East Asia in the
Late Miocene (ca. 7.78 Ma, 95% HPD: 5.16—-10.52; node
3), which overlapped closely with the time of the first
opening of the Bering Strait (7.4-5.5 Ma) [58]. Evidence

from sedimentology and foraminifera indicates that
uplift of the St. Elias Mts. in Alaska began about 8.5 Ma
[59]. Palynological analyses suggest that the trends of
temperature decline and increasing canopy openness in
Alaska and Yukon Territory occurred between 9.7 and
7.0 Ma, owing to global and local tectonic developments
[60]. These events may explain the distribution of Coptis
between southern East Asia and western North America
during the Late Miocene. The split of western North
American Polypodium californicum Kaulf. (Polypodia-
ceae) and its eastern Asian relatives (P. fauriei (Copel.)
Makino & Nemoto and P. glycyrrhiza D.C. Eaton) also
occurred during the same period (ca. 8.81 Ma, 95%
HPD: 5.06-13.08) [61]. Such distribution patterns result-
ing from orogenic events have been found in some plant
lineages and in different biomes, such as Campanulaceae
[62], Orchidaceae [63], and Rubiaceae [64].

One dispersal event in clade I occurred in the early Plio-
cene from southern East Asia to Japan (ca. 4.85 Ma, 95%
HPD: 2.98-6.80; node 4). The most recent common ances-
tor of Japanese Pseudotsuga japonica (Shiras) Beissn. and
mainland Chinese P. gaussenii Flous and P. sinensis Dode
(Pinaceae) was estimated to occur at ca. 4.64+ 1.93 Ma
[65]. In Eupteleaceae, Chinese Euptelea pleiosperma Hook.
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f. & Thomson split with Japanese E. polyandra Siebold &
Zucc. at ca. 6.04 Ma (95% HPD: 2.89-9.36) [66]. The drop
of sea level may have resulted in exchanges of plants
between mainland Asia and the Japanese Islands via the
East China Sea land bridge, and subsequent rise of sea level
and global cooling (Fig. 2) [67], as well as an increasingly
drier climate in Asia [68], may have caused the interruption
of the continuous distribution of ancestral populations of
some extant species during the Late Miocene to the Early
Pliocene.

Within clade II, one dispersal event from Japan to Taiwan
occurred in the Early Pleistocene (ca. 1.34 Ma; 95% HPD:
0.69-2.18; node 5). The eustatic sea-level fluctuation during
this period, as well as global cooling (Fig. 2), may have
triggered Coptis range expansion from Japan to Taiwan via
the Ryukyu Islands, and may have subsequently caused
range fragmentation. A similar scenario also explains the
current distribution of Taiwanese Chamaecyparis formosen-
sis Matsum. and C. taiwanensis Masam. & Suzuki (Cupres-
saceae) from hypothetical Japanese ancestors [69]. Our
analysis on Dichocarpum W.T. Wang & P.G. Xiao indicates
that Taiwanese D. arisanense (Hayata) W.T. Wang & P.G.
Xiao could have originated from mainland China in the
Early Pleistocene (ca. 1.26 Ma, 95% HPD: 0.48-2.33) [70].
These studies support the hypothesis that temperate
elements of the flora of Taiwan recently migrated from
mainland China and Japan [71].

Conclusions

We present a dated phylogeny for all species of Coptis, a
genus of pharmaceutical and economical importance.
Our biogeographical inference indicates that a vicariance
event between Japan-western North America and
eastern North America occurred in the Middle Miocene,
resulting in the split of Coptis and Xanthorhiza. The
most recent common ancestor of Coptis occurred in
western North America, southern East Asia and Japan.
In Coptis, two vicariance episodes, involving Japan and
western North America-southern East Asian and
western North America and southern East Asian, took
place at ca. 9.55 Ma and 7.78 Ma, respectively. Two
dispersal events happened from mainland Asia to Japan
at ca. 4.85 Ma and from Japan to Taiwan at ca. 1.34 Ma,
respectively. This study shed light on the past floristic
exchanges between East Asia and North America, as
well as within East Asia.
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