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The evolution of a series of behavioral
traits is associated with autism-risk genes
in cavefish
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Abstract

Background: An essential question in evolutionary biology is whether shifts in a set of polygenic behaviors share a
genetic basis across species. Such a behavioral shift is seen in the cave-dwelling Mexican tetra, Astyanax mexicanus.
Relative to surface-dwelling conspecifics, cavefish do not school (asocial), are hyperactive and sleepless, adhere to a
particular vibration stimulus (imbalanced attention), behave repetitively, and show elevated stress hormone levels.
Interestingly, these traits largely overlap with the core symptoms of human autism spectrum disorder (ASD), raising
the possibility that these behavioral traits are underpinned by a similar set of genes (i.e. a repeatedly used suite of
genes).

Result: Here, we explored whether modification of ASD-risk genes underlies cavefish evolution. Transcriptomic
analyses revealed that > 58.5% of 3152 cavefish orthologs to ASD-risk genes are significantly up- or down-regulated
in the same direction as genes in postmortem brains from ASD patients. Enrichment tests suggest that ASD-risk
gene orthologs in A. mexicanus have experienced more positive selection than other genes across the genome.
Notably, these positively selected cavefish ASD-risk genes are enriched for pathways involved in gut function,
inflammatory diseases, and lipid/energy metabolism, similar to symptoms that frequently coexist in ASD patients.
Lastly, ASD drugs mitigated cavefish’s ASD-like behaviors, implying shared aspects of neural processing.

Conclusion: Overall, our study indicates that ASD-risk genes and associated pathways (especially digestive, immune
and metabolic pathways) may be repeatedly used for shifts in polygenic behaviors across evolutionary time.
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Background
Animal species have evolved to changing environments by
modifying morphological, physiological and behavioral
outputs [1]. One challenging question in evolutionary
biology is how animals evolved multiple behaviors with
independent genetic bases. Indeed, some behavioral
syndromes demonstrate that correlated behaviors can be
underpinned by different genetic factors [2, 3]. Currently,
it is largely unknown if any particular suite of genes, or
so-called ‘genetic toolkit’ [4–6], are modified across

evolutionary time to affect a set of genetically independent
multiple behaviors.
To investigate how multiple behaviors evolve, we

focused on behaviors whose physiological and molecular
pathways may be comparable across species. For ex-
ample, almost all animal species exhibit a sleep-like
state, characterized by extended periods of behavioral
quiescence that correlate with elevated arousal thresh-
olds to sensory stimuli [7, 8]. Moreover, the molecular
(e.g. melatonin) and cellular mechanisms of sleep-like
states are shared among some animal species [9, 10].
Similarly, despite large differences in the complexities of
their behavioral traits, vertebrates share many core
characteristics of neural connectivity and molecular
pathways in their innate social behaviors (e.g. mesolimbic
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system and oxytocin/vasopressin) [6, 11–15], stress-related
behaviors [16], attention/cognition-related molecular
pathways [17], and starvation/satiation pathways [18].
Some of these behaviors, including social responses, show
even deeper conservation within Metazoa, especially in
molecular pathways [5, 6]. This conserved molecular path-
way was suggested as a genetic ‘toolkit’ for repeated evolu-
tion of social behavior [6].
Since many of these behavioral pathways are shared

across vertebrates, we examined the Mexican teleost As-
tyanax mexicanus, which consists of both cave-dwelling
and surface-dwelling populations. Notably, the cave
morphs have significantly diverged from the surface
morphs in multiple behaviors during evolution. Such traits
include loss of schooling (reduced social interaction), per-
forming repetitive behaviors, sleep deficits, hyperactivity,
behavioral adherence to a particular vibration stimulus at
40 Hz (behaviorally adhere to a particular stimulus, called
vibration attraction behavior, or VAB [19]), and higher
cortisol levels (related to higher anxiety levels) [20]. Unlike
cavefish, the conspecific surface-dwelling populations
readily school, do not exhibit repetitive behavior or hyper-
activity, have normative sleep, do not show strong adher-
ence to a vibration stimulus, and have lower cortisol levels
than cave morphs. This polymorphic suite of traits that
are present in one ecotype and absent in another is rare
within that natural world. Surprisingly, many of these
cavefish behaviors overlap with the core symptoms of a
human psychiatric disease, autism spectrum disorder
(ASD) (e.g., reduced social interaction, performing repeti-
tive behavior, sleep deficits, hyperactivity, adherence to a
particular stimulus or object, and higher anxiety level
[21–23]). In addition, many of these ASD-like traits in
cavefish show large variations, ranging from the levels
of surface- to cave-type [19, 24, 25]. This is reminis-
cent of the large variation within ASD: from severe to
high functioning [22]. Accordingly, the behavioral
similarities and the homologies of the vertebrate ner-
vous system motivated us to investigate whether shifts
in orthologs of ASD-risk genes may underpin the
evolution of multiple behaviors of both humans and a
teleost species.
This study, therefore, seeks to answer the following

questions: (1) Are ASD risk genes in humans and A.
mexicanus expressed in similar directions when compar-
ing ASD patients with human controls, and cavefish
with surface fish? (2) Do human ASD-risk genes exhibit
signatures of molecular evolution in cavefish that are di-
vergent from the rest of the genome and may indicate
selection? (3) Do cavefish respond to pharmacological
treatments for autism in a similar way as patients,
suggesting a shared neural basis in the regulation of
ASD-like behaviors (e.g. dopaminergic, serotonergic,
adrenergic circuits) [26–29]?

Results
We first queried the Astyanax genome to identify ortho-
logs of the ASD-risk genes, which are listed in the data-
base of Simons Foundation Autism Research Initiative
(SFARI) (sfari.org) [30]. We found that 92.5% of 493
human ASD-risk genes (SFARI Gene database Category
1 to 4 and Category S—high evidenced ASD-risk
genes—accessed in March 2017 [20, 30–32]. See
Methods) have orthologs in the Astyanax mexicanus
genome v1.2 (Table 1, Additional files 1 and 2).
In human studies, some ASD-risk genes exhibit differ-

ential expression between people with and without ASD
[33–35]; thus, we analyzed gene expression differences
between cavefish and surface fish using a previously
published RNAseq dataset for A. mexicanus [36, 37].
This dataset includes gene expression data collected
from whole individuals of both surface fish and Pachón
cavefish at key developmental time points: 10 h
post-fertilization (hpf; end of the gastrulation), 24 hpf
(end of somitogenesis; hatching), 36 hpf (live with yolk)
and 72 hpf (most of the organs, including gut and jaw,
have developed) (GenBank SRA; accession code:
PRJNA258661 [31, 36, 38]). Since ASD symptoms in
humans emerge at an early developmental stage (even
before 1–2 years old [32, 39]), we investigated both the
interaction of age × morph (surface fish and cavefish)
for all time points and the expression difference between
morphs at 72 hpf in ASD-risk genes. We hypothesize
that this 72 hpf is a comparable time point to ‘just before
birth’ in humans when the basic neural circuit has been
formed and is ready to prune synapses and rewire to
form the proper neural circuits in response to environ-
mental stimuli [40, 41].
Remarkably, genes in the categories with stronger

evidence of association with ASD in humans (Cat-
egories 1 and 2 in SFARI Gene), were more often sig-
nificantly differently expressed between surface fish
and cavefish than in categories with weaker evidence
of association with ASD in humans (Categories 3, 4
in SFARI Gene) (Table 1, Additional files 1 and 2).
This trend was observed in both the interaction of
age × morph (Table 1: Cat. 1–2 range 65–72% vs.
Cat. 3-S range 57–63%) and the expression difference
between morphs at 72 hpf (Table 1: Cat. 1–2 range
68–94% vs. Cat. 3-S range 63–71%) of orthogroups.
Note, an orthogroup consists of multiple paralogs that
share the same ancestor with each human gene [42].
This trend of higher rates of differential expression
for genes in categories with stronger evidence was
also seen at the level of individual A. mexicanus
genes (i.e., paralogs; Table 1, Additional file 1). This
suggests that, although paralogs evolved from gene
duplication events and may be under different expres-
sion regulation, differentially expressed orthologs of
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ASD-risk genes are more common in the higher
confidence SFARI genes.
To test whether the observed levels of differential ex-

pression for orthologs of Category 1 and 2 are signifi-
cantly higher than for a random subset of genes across
the Astyanax genome, we performed bootstrapping
using 9999 random samplings of 500 genes from the
22,767 genes with expression data out of 23,042 total
genes in the genome (Ensembl.org Assembly; Ast-
Mex102; Genebuild last updated July 2016 [31, 43–45]).
The number 500 was chosen because we used 493
SFARI genes in our analysis. Of this random sampling of
a subset of genes, our results indicated that 48.0 ± 4.2%
(mean ± 95% confidence interval) had a significant age ×
morph interaction, and 49.0 ± 4.4% were significantly dif-
ferentially expressed between cave and surface fish at 72
hpf (Table 1). In contrast, we found that 61.1 and 60.7%
of Category 1 and 2 genes, respectively, exhibited a sig-
nificant age × morph interaction and 75 and 64.3% of
Category 1 and 2 genes, respectively, were differentially
expressed at 72 hpf. This result indicates that cavefish
orthologs of human genes in Category 1 and 2 ASD-risk
genes are enriched for differential expression between

cave and surface fish (> 99.9 percentile of bootstrapping
probability).
To evaluate whether this observed gene enrichment is

specific to ASD or applicable to other psychiatric dis-
eases, we also examined genes involved in schizophrenia
(SCZ), which shares many symptoms with cavefish and
ASD [46]. One database for SCZ-risk genes lists 44
genes as being tightly associated with the disease, and
another more recent database contains 304 genes
(www.szgene.org and www.szdb.org, respectively). Un-
like ASD-risk genes, these SCZ-risk genes do not show
enrichment for differential expression between cavefish
and surface fish compared with the random sampling of
gene subsets (of the SCZ-risk genes in szdb.org, 39.8 to
55.2% show significantly different expression between
cavefish and surface fish, Additional file 3). Thus, differ-
ential gene expression between cavefish and surface fish
appears to have more similarities to ASD than SCZ.
The ASD-risk genes are included in the SFARI

database mainly based on genetic association studies
(evaluation of genetic variation in human cohorts), in
which the expression direction—down or up regula-
tion—is not taken into account [30, 45, 47]. The specific

Table 1 The enrichment of the expression shifts between surface fish and cavefish in ASD-risk genes

Human ASD-risk genes Cavefish genes

Risk category # of Listed
Genes in
Sfari.org

% (#) human
ASD-risk genes
with cavefish
orthologs

% (#) of
orthogroups that
show significant
age × morph
interaction†

% (#) of orthogroups
that show significant
expression difference
between morphs at
72 hpf†

% (#) of all
paralogs that show
significant age ×
morph interaction†

% (#) of all paralogs
that show significant
expression difference
between morphs at
72 hpf†

Category 1 19 94.7%
(18 of 19)

72.2%
(13 of 18)

94.4%
(17 of 18)

61.1%
(> 99.9 percentile)
(22 of 36)

75.0%
(> 99.9 percentile)
(27 of 36)

Category 2 43 93.0%
(40 of 43)

65.0%
(26 of 40)

67.5%
(27 of 40)

60.7%
(> 99.9 percentile)
(34 of 56)

64.3%
(> 99.9 percentile)
(36 of 56)

Category 3 139 95.0%
(132 of 139)

60.6%
(80 of 132)

70.5%
(93 of 132)

50.3%
(84.8 percentile)
(95 of 189)

58.2%
(> 99.9 percentile)
(110 of 189)

Category 4 244 89.8%
(219 of 244)

62.6%
(137 of 219)

63.0%
(138 of 219)

51.9%
(96.1 percentile)
(167 of 322)

52.5%
(94.4 percentile)
(169 of 322)

Category S (not already included
among Cat 1–4 genes)

48 97.9%
(47 of 48)

57.4%
(27 of 47)

63.8%
(30 of 47)

44.2%
(4.7 percentile)
(34 of 77)

49.4%
(59.0 percentile)
(38 of 77)

Total 493 92.5%
(456 of 493
human genes)

62.1%
(283 of 456)

66.9%
(305 of 456)

53.8%
(352 of 654)

54.6%
(357 of 654)

Bootstrapping score: mean ±
95% confidence interval

48.0 ± 4.2% 49.0 ± 4.4%

The 72 h post-fertilization (hpf) represents the stage in which fish have hatched, but have not yet developed a swim bladder and the jaw is underdeveloped,
comparable to the late embryonic stage of mammals [111]. † P < 0.05 after Benjamini-Hochberg adjustment. Percentiles in the tables are from 9999-bootstrapped
values. SF: surface fish. CF: Pachón cavefish. Hpf: hours post fertilization. We avoided testing the differences between morphs in each developmental time point
(i.e. 10, 24 and 36 hpf) due to save statistical power. The number of genes are indicated in parentheses. See also Additional file 1 for each statistical test of
age x morph and expression difference at 72 hpf
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direction of expression of genes in a pathway or network
can provide evidence as to whether these molecular
pathways are strengthened or attenuated (co-expression
network) [33, 35, 48]. To address this, we compared the
direction of gene expression (up or down) between cave-
fish versus surface fish with that observed in ASD
patients versus controls, by utilizing the human brain
transcriptome of post-mortem ASD patients [33–35]. Of
the 58 and 3442 human orthologs that exhibited signifi-
cantly different gene expression between ASD patients
and controls in two different studies that both use post-
mortem cortices (Voineagu et al. 2011 and Parikshak et
al., 2016 respectively) [33–35], 74.1 to 74.6% were also
differentially expressed between cavefish and surface fish
(Table 2, Additional file 4).
Among the differentially expressed genes, 58.5 to

60.7% of cavefish genes showed the same direction of ex-
pression (i.e. cavefish relative to surface) as the human
genes from the ASD transcriptome studies (i.e. ASD pa-
tients relative to controls) (Table 2, Additional file 4)
[33–35]. This includes the down-regulation of distal-less
homeobox 1 (DLX1) and the up-regulation of bag family
molecular chaperone regulator 3 (BAG3) and chloride
intracellular channel protein 1 (CLIC1) cavefish ortho-
logs relative to surface fish, which consistently showed
similar patterns of expression in humans with ASD rela-
tive to controls [33, 35].
In contrast to the high percentage of ASD orthologs

that show differential gene expression between cavefish
and surface fish (Table 2), other ASD models—including
a classic ASD mouse model (BTBR mouse) [49], the
blood cells of ASD patients [50], and the neurons de-
rived from induced pluripotent stem cell (iPS cell) of
ASD patients [51]—exhibited much lower concordance
with human brain ASD transcriptomic studies (Table 2).
For several orthologs of Category 1 SFARI genes, we also
observed expression differences between the brains of
surface fish and cavefish by quantitative RT-PCR
(Additional file 5) in later developmental stages (from
1 month to 1 year old). Overall, these transcriptomic
analyses indicate that A. mexicanus cavefish and humans
with ASD share similar patterns of ASD-risk gene ex-
pressions that could underlie shared ASD-like behaviors.
To survey additional parallels, we examined patterns

of molecular evolution in DNA sequences of
ASD-risk genes. We tested whether ASD-risk genes
in A. mexicanus are highly divergent (i.e., potentially
under positive selection) between cavefish and surface
fish [52]. We identified the number of genes within
the ASD-risk genes that are divergence outliers be-
tween cavefish and surface fish based on three met-
rics from population genetics: (i) top 5% of FST for all
genes across the genome (indicates the difference in
allele frequencies between populations), (ii) top 20%

of DXY (pairwise nucleotide differences between two
populations) and/or (iii) P-value < 0.05 for hapFLK
[53] (detects selection signatures based on population
haplotype frequencies and is more an explicit test for
positive selection, where as FST and DXY are measures
of divergence) (Table 3, Additional files 6 and 7).
Since hapFLK is an explicit test of selection, we only
used hapFLK to test for enrichment of ASD-risk
genes for positive selection relative to the genome as
a whole.
We tested whether the cavefish orthologs of 493

ASD-risk genes (SFARI gene Category 1–4 and
Category S) were enriched for genes identified to be
under positive selection via hapFLK. We included any
Astyanax paralogs for ASD-risk genes (see Additional
file 7), and used a Fisher’s exact test with Yate’s cor-
rection [54] to test whether the number of ASD-risk
genes with P-values < 0.05 via hapFLK was overrepre-
sented relative to total number of genes in the gen-
ome with P-values < 0.05 via hapFLK.
We found that the ASD-risk genes are enriched (13.5%)

relative to all the genes in the genome (7.3%) for signa-
tures of selection using haplotype frequency (hapFLK, P
< 0.05; Table 3, Additional file 7). Thus, ASD-risk genes
were ~ 2× more likely to exhibit a signature of positive se-
lection than were the genes in the genome generally
(odds-ratio 1.94; 95% confidence interval: 1.54–2.45).
ASD-risk genes in humans are also hypothesized to be
enriched for signatures of positive selection [55].
Since we needed to set the cut-offs for FST and DXY

measures to percentages of the genome, enrichment
tests were not logical, and we performed Kruskal-Wallis
tests to assess differences between the ASD gene set
compared to all genes in the Astyanax mexicanus gen-
ome for FST and DXY. For all comparisons, genes with
no data were removed. Note that hapFLK is based on
cave and surface comparisons across 45 Astyanax
samples from five populations (see Methods), which
included additional populations that are beyond the
scope of the work here. FST and DXY, however, were only
focused on comparisons between Pachón cave popula-
tion and Choy surface population.
Although we documented that the ASD-risk genes

were enriched for significant hapFLK tests relative to the
genome, we found that of the 661 Category S and
Categories 1–4 SFARI genes with sequence data, 19 were
divergence outliers for FST (cut-off top 5% of all genes
across the genome; Additional file 7; seven of these were
divergence outliers with multiple metrics) and 51 were
divergence outliers for DXY (cut-off top 20%; 13 of these
were divergence outliers defined by multiple metrics;
Additional file 7), which are both a lower number of
genes than what would be expected solely from our
percent cut-off metrics (Note: FST and DXY plots for
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divergence outliers which meet at least two metrics are
shown in Additional file 6). ASD-risk genes that pass
our outlier threshold for FST (top 5% of all genes
genome-wide) are on average no more divergent between
cavefish and surface fish than genome-wide non-ASD-risk
genes that also passed the outlier threshold FST (top 5%)
(FST: Kruskal-Wallis test; X2 = 1.727, df = 1, P-value = 0.189,
Additional files 6 and 7). When comparing genes that
did not pass our FST threshold (i.e., the bottom 95%
of FST values across the genome), ASD-risk genes
were significantly more divergent than non-outlier,

non-ASD-risk genes, but the effect size was small
(mean ASD-risk genes = 0.20, mean non-ASD-risk
genes = 0.23, FST: Kruskal-Wallis test; X2 = 4.781, df = 1,
P-value = 0.029, Additional files 6 and 7). Thus, we have
little evidence that ASD-risk genes are on average more
divergent for FST than non-ASD-risk genes.
Interestingly, we found evidence that divergence outlier

ASD-risk genes for DXY were more conserved than diver-
gence outlier non-ASD genes. DXY outlier ASD-risk genes
were ~ 0.5× less divergent between cave and surface fish
than outlier non-ASD-risk genes (DXY: Kruskal-Wallis test;

Table 3 Gene set enrichment analysis based on Fisher’s exact test with Yate’s continuity correction

Divergence metrics Comparisons Significant
ASD genes

Total ASD genes Significant genes
in genome

Total genes
in genome

Yate’s Chi
Square X2

Degrees of
freedom

Yate’s P-value

hapFLK Whole genome 86 635a 1648 22,710 34.557 1 < 0.0001

Gene enrichment for ASD genes was based on comparisons between Choy surface (Choy) and Cave (Pachón). Calculations were performed using the chisq.test
function in R
aNote that total ASD genes for hapFLK is lower than the total for orthologs and paralogs due to missing data

Table 2 Direction of gene expression (up- or down-regulated) in this and previously published studies (cavefish compared with
surface fish, and cases compared with controls)

# orthologs of
SFARI Gene that
express differently
(up or down)

Transcriptome from
the cortices of ASD patients
(Voineagu et al., 2011)

Transcriptomes from
multiple tissues of ASD patients
(review: Ansel et al., 2017)

Transcriptome from the
cortices of ASD patients
(Parikshak et al., 2016)

A. mexicanus
(Whole Embryo
10–72 hpf)
Reanalyzed in
this study

335 of 409†
(81.9%)

43‡ of 58 orthologs expressed
differently between CF and SF
(74.1%)

51‡§ of 77 orthologs expressed
differently between CF and SF
(66.2%)

2567‡ of 3442 orthologs expressed
differently between CF and SF
(74.6%)

31 of 51‡ genes expressed in the
same direction:
(60.7%)

27 of 45‡§ directionally expressed
genes are in the same direction:
(60.0%)

1843 of 3152‡ directionally
expressed genes are in the same
direction:
(58.5%)

BTBR Mouse
(Hippocampus)
Provenzano et al.,
2016

30 of 493 (6.1%) 2 of 65 orthologs expressed
differently in BTBR mouse
(3.0%)a

9§ of 105 orthologs expressed
differently in BTBR mouse
(8.6%)b

216 of 4042 orthologs expressed
differently in BTBR mouse
(5.3%)c

0 of 2 genes expressed in the
same direction
(0.0%)

4 of 7§ directionally expressed
genes are in the same direction
(57.1%)

109 of 216 directionally expressed
genes are in the same direction
(50.5%)

ASD patients
(Blood)
Pramparo et al.,
2015

51 of 493 (10.3%) 11 of 65 human genes expressed
differently in ASD patient’s blood
(16.7%)d

16§ of 107 human genes
expressed differently in ASD
patient’s blood
(14.8%)e

485 of 4425 human genes
expressed differently in ASD
patient’s blood
(11.0%)f

7 of 11 genes expressed in the
same direction
(63.6%)

4 of 7§ directionally expressed
genes are in the same direction
(57.1%)

179 of 485 directionally expressed
genes are in the same direction
(36.9%)

Neural cells
derived from iPS
cell of ASD
patient
Mariani et al.,
2015

95 of 493
(19.3%)

18 of 65 of human genes
expressed differently in neurons
derived from iPS cells of ASD
patients
(27.7%)g

21§ of 107 human genes
expressed differently in neurons
derived from iPS cells of ASD
patients
(19.6%)h

527 of 4425 human genes
expressed differently in neurons
derived from iPS cells of ASD
patients
(11.9%)i

0 of 18 human genes expressed in
the same direction
(0%)

1 of 16§ directionally expressed
genes are in the same direction
(6.3%)

163 of 527 directionally expressed
genes are in the same direction
(30.9%)

† 84 of 493 orthologs were not found in the Astyanax gene build at 2016 (Ensembl.org Assembly: AstMex102; Genebuild at Jul 2016)
‡ Some orthologs of human genes have multiple paralogs in A. mexianus (i.e. shank3a and shank3b)
§ We excluded genes that showed inconsistent expression directions between multiple reports (i.e. up-regulated in one paper but down-regulated in another [34])
Χ2 tests for differentially expressed genes against total genes between A. mexicanus and BTBR Mouse (a: Χ2 = 30.2, P = 1.17 × 10− 7; b: Χ2 = 31.3, P = 6.57 × 10− 8;
and c: Χ2 = 1785.6, P < 1.0 × 10− 10), between A. mexicanus and patients’ blood (d: Χ2 = 14.9, P = 3.48 × 10− 4; e: Χ2 = 21.7, P = 9.40 × 10− 6; and f: Χ2 = 1445.5,
P < 1.0 × 10− 10), and between A. mexicanus and patients’ iPS cells (g: Χ2 = 8.1, P = 0.0136; h: Χ2 = 16.3, P = 1.66 × 10− 4; and i: Χ2 = 1377.2, P < 1.0 × 10− 10). All of these
tests have df = 1. P-values were multiplied by the number of the tests (Bonferroni correction)
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X2 = 29.285, df = 1, P-value < 0.001, Additional file 6).
These results suggest that ASD-risk genes, which fall
within our outlier cut-offs for DXY, may be experiencing
purifying selection relative to outlier genes in the rest of
the genome. In contrast, non-outlier ASD-risk genes and
non-outlier, non-ASD-risk genes in the remainder of the
genome do not differ in their level of divergence for DXY

(DXY: Kruskal-Wallis test; X2 = 0.046, df = 1, P-value =
0.830, Additional files 6 and 7). Considering that many
ASD-risk genes in human were found as constrained
[56, 57], this finding indicates another similarity between
cavefish and human in the evolution of ASD-genes.
Analysis with Ingenuity Pathway Analysis Comparison

Analysis (IPA) [48] highlights a further potential rela-
tionship between the evolution of ASD-risk genes and
cavefish traits (Additional file 8). While many functional
categories are enriched for non-outlier and outlier
ASD-risk genes, some functional categories are only
enriched in outlier ASD-risk genes (Additional file 8). In
comparison to non-outlier ASD-risk genes, outlier
ASD-risk genes (defined by top 5% of FST, top 20% of
DXY, and/or significant hapFLK scores) are enriched for
functions that include auditory disease, digestive system
development and function, inflammatory diseases, lipid
metabolism, ophthalmic disease, and others. These re-
sults were consistent even when we imposed a more
stringent cut-off for DXY (top 5%). Many of these func-
tional categories have been observed as co-morbid
symptoms with ASD [58, 59] (Additional file 8). These
functional categories map well to phenotypes likely
under selection in cavefish [20], as well as known symp-
toms in ASD patients.
Multiple cavefish orthologs of ASD-risk genes overlap

with known quantitative trait locus (QTL) intervals for
behavioral and sensory traits (Fig. 1, Additional file 9).
The ASD-risk genes that are divergence outliers by one
or more divergence metrics and are under previously
mapped QTL are abca5, cacna1fb, chd7, dock8, erbin
(i.e. errbb2ip), grip1, hdac4, pah, pax6, plxna4, scn1a,
slc1a2b (Fig. 1). Many of the divergent outlier genes are
not under QTL, which may be because of the fragmen-
ted nature of the current genome sequence of A. mexi-
canus. However, this initial analysis revealed that many
of the outlier genes under QTL for eye size, amino acid
response, and taste bud number are members of two
major gene networks that have been suggested to be in-
volved in ASD: synaptic function (cacna1fb, dock8, erbin,
grip1, plxna4, scn1a, slc1a2b) and epigenetic regulation
(chd7, hdac4) [23, 56, 60]. Considering that eye-size is
associated with adherence behavior [19] and chemosen-
sory organs can modify wakefulness [61], this result im-
plies that some of the putatively selected genes in
cavefish may also be associated with ASD-like behavioral
phenotypes.

The results presented above indicate that the ASD-risk
genes in cavefish and humans share evolutionary and
gene expression signatures. Additionally, we sought to
understand if cavefish and ASD patients respond
similarly to drugs used to treat ASD. Accordingly, we
treated A. mexicanus with the U.S. Food and Drug
Administration-approved ASD drugs, aripiprazole and
risperidone, and classic antipsychotic drug, clozapine
[62, 63]. These drugs act as agonists and/or antago-
nists of multiple receptors for the neurotransmitters
dopamine, serotonin, histamine, adrenalin/noradrena-
lin, and/or acetylcholine [62, 63]. We also treated se-
lective serotonin reuptake inhibitor, fluoxetine, and an
opioid blocker, naltrexone, which are used for ASD
patients under the physicians’ direction [62–64]. We
found that treating cavefish with aripiprazole, risperidone,
clozapine and fluoxetine mitigated ASD-like behaviors in
cavefish. The drugs significantly reduced adherence to a
particular vibration stimulus (Fig. 2a, b, d), significantly re-
duced hyperactivity (swimming distance in Fig. 2f, h, i)
and increased sleep duration (Fig. 2k, m, n) (see
Additional file 10), which are similar to the responses ob-
served in ASD-patients [62–64]. In contrast, these drugs
showed little effect on surface fish behaviors (Fig. 2). The
drug naltrexone, an opioid blocker that can mitigate hyper-
activity and restlessness but not the core symptoms of
ASD and did not change cavefish behaviors (Fig. 2e, j, o)
[64]. These pharmacological studies indicate that cavefish
may share similar neural pathways with ASD patients since
chemical intervention alters similar behaviors.

Discussion
For decades, evolutionary biologists have been interested
in understanding how animals evolve multiple behaviors
whose genetic bases are frequently independent and com-
plex. Here we show that cavefish and ASD patients exhibit
similarities in expression direction among ASD-risk genes,
evolutionary signatures for ASD-risk genes, and responses
to ASD symptom-treating drugs. These overlaps may indi-
cate potential utilization of a suite of genes (ASD-risk
genes) for the evolution of ASD-like behaviors in both hu-
man and cavefish. These ASD-risk genes are also known
to be involved in social behavior of honeybees and mam-
mals [5], suggesting that animals may frequently modify
ASD-risk genes in the evolution of behaviors.
Modifications to most ASD-risk genes may not result

in acute deleterious effects (except for some ASD-risk
genes contributing to core neural activities that are often
seen in de novo mutation) [23, 65, 66]. Indeed, in
humans, many of the common variants for ASD-risk
genes have small effects that might modify brain systems
more subtly; in some cases, these modifications may
even provide rather small beneficial effects [55, 67].
Accordingly, it has been reported that ASD positively
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correlates with childhood intelligence, college comple-
tion, and years of schooling; in addition, human
ASD-risk genes show enrichment for signatures of
positive selection [55]. Many of these small-effect al-
leles are thought to provide cumulative effects that
can lead to ASD [68]. In contrast to these common
small-effect variants, ASD-risk genes contributing to
core neural activities are frequently found as rare al-
leles and/or de novo variants, and only a few of these
variants are thought to be enough to promote ASD

[21, 23]. In A. mexicanus, the quantitative trait loci
(QTL) mapping of cavefish behaviors—adherence to
vibration stimulus, loss of schooling and loss of
sleep—showed small-effect sized QTL or no detect-
able QTL [20]. We therefore consider that cavefish is
more similar to the common variant-induced ASD
than ASD induced by rare or de novo variants. We
expect that some of the cavefish ASD-risk genes
under QTL may potentially yield a small beneficial
effect in the cave environment (Fig. 1).
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Fig. 1 The congruency between quantitative trait loci and ASD-risk genes highlights potential genetic hubs for gene regulation. Linkage map
constructed from 115 F2 hybrid progeny of a cross between a single surface fish female and a single male Pachón cavefish. The map includes
699 markers assembled into 25 linkage groups that collectively span 1835.5 cM. Colored bars represent approximate position of QTL for eye size,
chemical (amino acid) sensing ability, taste bud number, VAB level, and the number of mechanosensory superficial neuromast at the eye orbit
(EO SN) as indicated [74, 109]. Lens: lens size, Mel: melanophore number, Teeth: teeth number, Eye: eye size, Tbud: taste bud number, ONL:
thickness in the outer nuclear layer of retina [110]. Each linkage group is annotated with genomic marker (right side) and anchored ASD-risk
genes (left side). Blue characters in genomic markers are the ones that share the same genomic scaffold as the ASD-risk genes on the left side.
Red characters in ASD-genes are the ones that show the signatures of divergence shown in Additional file 7. Other genes (at the left) are
successfully anchored Category 1 and 2 SFARI Genes (Additional file 9, also Additional file 1)
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The IPA analysis revealed that, compared to
non-selected ASD genes, positively selected and/or highly
divergent ASD-risk genes in cavefish are enriched in the
pathways of digestive system development/function, in-
flammatory diseases, lipid metabolism and energy metab-
olism. Indeed, some phenotypes are observed in cavefish
relative to surface fish: cavefish exhibit fatty livers and in-
satiable appetite [69], lower metabolic rate than surface
fish [70], higher infection susceptibility, and morpho-
logical change in gut (personal observations). These
co-occurring symptoms raise a possible avenue for future
work to explore how changes in immune function and
metabolism (and perhaps gut function) influence a set of
ASD-like behaviors in cavefish. Indeed, metabolism,
immune and gut defects have been suggested in ASD
etiology in humans [59, 71–73].

Notably, besides ASD-like behaviors, cavefish evolved
eye degeneration, pigment-loss, widened jaws, an in-
crease in fat tissue, an increase in number of teeth, and
enhancement of non-visual sensory systems (mechano-
sensory lateral line, taste buds, and olfactory epithelium)
[20, 69, 74–82]. Some of these cave-associated traits may
be genetically correlated to ASD-like behaviors. For
example, adherence to a particular vibration and loss of
schooling showed significant correlations with eye size
(vibration attraction behavior and the eye size, and
schooling and eye size in F2 intercross: r = − 0.26 and
ρ = 0.27, respectively [77, 83]). We also found that
many of the positively selected orthologs of ASD-risk
genes are under QTL intervals for eye size (Fig. 1). How-
ever, visual impairment itself may not induce a set of
ASD-like behaviors. Rearing surface fish in the dark did
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Fig. 2 Human drugs for ASD mitigated cavefish-type symptoms in F1 hybrid and cavefish. (a-e) Adherence to 40-Hz vibration stimulus. Vibration
attraction behavior is represented by the square-rooted number of approaches during a 3-min assay. (f-j) Swimming distance (m per 24-h assay).
(k-o) The changes in sleep duration (h per 24-h assay). Before and after treatment of drugs used for ASD patients—aripiprazole (a, f, k),
risperidone (b, g, l), fluoxetine (c, h, m), clozapine (d, i, n), naltrexone (e, j, o)—were observed for 24 h each and plotted with means ± s.e.m. In
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Yoshizawa et al. BMC Evolutionary Biology  (2018) 18:89 Page 8 of 16



not increase their vibration attraction behavior [19, 84].
Also, there is no correlation between loss of eyes and
many of these behavioral traits [85]. Therefore, these data
suggest that eye regression is not the major driver to shift
a set of ASD-like behaviors. We then propose that, in a
regard of the evolution of multiple behaviors, the eye
regression has little contribution to ASD-like behaviors
exhibited by the cavefish.
The potential for shared genetic underpinnings be-

tween cavefish and ASD can offer further insights into
the etiology of ASD. Recent studies have helped clarify
the genetics of de novo variants of ASD, which likely ac-
count for 3–15% of ASD cases [23, 56, 65, 86]. However,
given that ASD is highly heritable and that all common
and rare genetic variants are estimated to explain a signifi-
cant proportion of ASD cases (17 ~ 50%) [23, 65, 66], an
animal model for multiple heritable variants is still un-
available. Here, cavefish may serve to uncover gene-gene
and gene-environment interactions, and to shed light on
the effect of the gut-brain axis on ASD [20, 71].

Conclusion
Overall, cavefish appears to be an advantageous platform
upon which to untangle the polygenic evolutionary pro-
cesses that generate a diverse behavioral spectrum in
vertebrates. A recent study in honey bees—in which
gene expression modifications between the brains of so-
cial and less-social honeybees were found to be enriched
in ASD-risk genes—highlights further that ASD-risk
genes for social behaviors are deeply conserved [5].
Above all, in many of animal species, including human
and cavefish, a set of ASD-risk genes may impact the
evolution of multiple behaviors [5].

Methods
Fish maintenance and rearing in the lab
Astyanax mexicanus surface fish used in this study were
laboratory-raised descendants of original collections
made in Balmorhea Springs State Park, Texas. Cavefish
were laboratory-raised descendants originally collected
from Cueva de El Pachón (Pachón cavefish) in Tamau-
lipas, Mexico.
Fish (surface fish and Pachón cave populations)

were housed in the University of Hawai‘i at Mānoa
Astyanax facility with temperatures set at 21 °C ± 0.5 °C
for rearing, 24 °C ± 0.5 °C for behavior experiments, and
25 °C ± 0.5 °C for breeding [24, 87]. Lights were main-
tained on a 12:12 light:dark cycles [24, 87]. For rearing
and behavior experiments, light intensity was maintained
between 30 and 100 Lux. Fish husbandry was performed
as previously described [20, 24, 87]. Fish were raised to
adults and maintained in standard 42 L tanks in a
custom-made water-flow tank system. Adult fish were fed
a mixed diet to satiation three times daily starting 3 h after

the lights came on (Zeitgeber time 3 or ZT3), ZT6 and
ZT9 (TetraColor Tropical Fish Food Granules and Tetra-
Min Tropical Fish Food Crisps, Tetra, Blacksburg, VA;
Jumbo Mysis Shrimp, Hikari Sales U.S.A., Inc., Hayward,
CA). All fish in the behavioral experiments were between
2.5–5 cm in standard length and between 6 and 18 months
old. All fish care and experimental protocols are approved
under IACUC (17–2560) at University of Hawai‘i at
Mānoa.

Genome survey and gene expression of ASD- and
SCZ-risk genes
We identified a list of ASD-risk genes from the Simons
Foundation Autism Research Initiative (https://sfari.org/
resources/sfari-gene), which houses an extensive collec-
tion of data on genes potentially implicated in ASD in
humans.
We queried the Simons Foundation Autism Research

Initiative (https://www.sfari.org/resource/sfari-gene/; up-
dated March 2017) databases and selected 493 ASD
genes in Categories 1–4 and S (genes in each category
are classified based on form of ASD, amount of risk con-
ferred, and type of evidence for association with ASD,
with higher categories indicating more evidence. ‘S’ cat-
egory genes are associated not only with ASD but also
with additional symptoms). For SCZ-risk genes, we
queried the Schizophrenia Research Forum (http://
www.szgene.org/; updated 2012) and (http://szdb.org/;
updated May 2017) and extracted 44 genes in the ‘Top
Results’ and 304 genes based on ‘Score 2–4,’ respectively.
These were based on the evidence from human
genome-wide association study, gene expression of post-
mortem brains and/or expression QTL) [45, 47]. For ex-
ample, in SCZ genes, score 4 group includes the genes
which meets 4 categories: (1) significantly differently
expressed in patients, (2) significant in genome-wide as-
sociation study, (3) significant in linkage and/or associ-
ation study and (4) significant in pathway analysis
(Additional file 3). Both of these gene sets were surveyed
against the recent cavefish genome (Ensembl.org Assem-
bly; AstMex102; Genebuild last updated July 2016 [31,
43–45]). First, human genes were queried with the
Homologue (Orthologous Cavefish Genes) attributes to
Astyanax genes in BioMart. Including the paralogs, we
have a list of 677 Astyanax homologs of human ASD
genes (Additional file 1). Similarly, we have a list of 766
homologs of human SCZ genes (Additional file 3).
For the RNAseq transcriptome analysis, variation in

gene expression was analyzed using previously
published RNAseq data (Genbank sequence read
archive (SRA), accession code: PRJNA258661) [31, 38].
This dataset includes 50-pooled whole larvae from
surface fish and Pachón cavefish (cave and surface
fish pooled separately) at different developmental
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stages (10 h post fertilization (hpf ), 24 hpf, 36 hpf
and 72 hpf ). Libraries for each pool of 50 larvae were
prepared once and then sequenced on the Illumina HiSeq
in three technical replicates [36, 88]. Data were analyzed
by following previously published protocols [89]. Briefly,
the exon information for A. mexicanus was acquired via
the GTF file (Astyanax_mexicanus.AstMex102.89.gtf.gz)
at ensembl.org (http://www.ensembl.org/info/data/ftp/
index.html) and RNA sequences in fastq format were
aligned to A. mexicanus genome sequence (“Astyanax_-
mexicanus.AstMex102.dna_sm.toplevel.fa” downloadable
from ftp://ftp.ensembl.org/pub/release-91/fasta/astyanax_
mexicanus/dna/) using STAR aligner version 2.5.1b [90].
First, we indexed the genome sequence for STAR by
using “–runMode genomeGenerate” “–sjdbGTFfile.
/Astyanax_mexicanus.AstMex102.84.gtf” “–genomeFas-
taFiles. /Astyanax_mexicanus.AstMex102.dna_sm.top
level.fa”. We then mapped the raw fastq reads to Astya-
nax genome using “–outSAMtype BAM Unsorted.” After
the alignment, a gene model database was built by the
function makeTxDbFromGFF in the GenomicFeatures
package (ver. 1.23.31) in R [91]. Once the database was
built, we used the function summarizeOverlaps in the
GenomicAlignments package (ver. 1.8.0 [91]) in R to ad-
just the read counts based on the exon information of
each gene, which converted the read counts into FPKM
(Fragments Per Kilobase Million). Expression levels were
compared using the adjusted read counts.
To quantify expression differences between surface

fish and Pachón cavefish at 72 hpf, we used the ‘re-
sults’ function in the DESeq package after estimating
the data variance (ver. 1.12.0 [92]). We also tested the
age × population interactions by setting the parameter
‘reduced = ~ population + age’ in the function of
DESeq, followed by the ‘results’ function to extract
the statistics [89]. All scripts have been made avail-
able on GitHub (https://github.com/masa-yoshizawa/
Asty-RNAseq). The analysis at 72hpf was selected be-
cause (i) differences in expression patterns through
developmental stages could affect the nervous system de-
velopment (age × population interactions), and (ii) fish
start moving/swimming according to the sensory inputs
so that the neural wirings likely are being elaborated
(comparable to infants: 72 hpf). Benjamini-Hochberg ad-
justed P-values and log2 expression differences between
cavefish and surface fish were used to determine signifi-
cance (as described in [89]). We performed bootstrapping
using 9999 random samplings of 500 genes from the
22,767 genes with expression data out of 23,042 total
genes in the genome of A. mexicanus (Ensembl.org
Assembly; AstMex102; Genebuild last updated July
2016 [31, 43–45]). The number of 500 is chosen
because we used 493 SFARI genes in our analysis
(Table 1 and Additional file 3: S2).

Population genomics and selection pressure analyses
Sample collection and preparation
All fin-clips of fish in the wild were collected under
Mexico’s National Aquaculture and Fishing Commission
(CONAPESCA) permit PPF/DGOPA - 106/2013 to Dr.
Claudia Patricia Ornelas García and Mexico’s Secretariat
of Environment and Natural Resources (SEMARNAT)
permit 02241 to Dr. Ernesto Maldonado. Briefly, we in-
cluded a core set of samples which contained the follow-
ing: Pachón cave, N = 10 (9 newly re-sequenced + the
reference reads mapped back to the reference genome)
and surface (Río Choy), N = 9. After DNA extraction
with Genomic-Tip Tissue Midi kits and DNeasy Blood
and Tissue kit (Qiagen), individual samples were bar-
coded and next-generation sequencing libraries were
prepped with Illumina TruSeq Nano DNA Sample Prep
Kit (v3 reagents). Every five barcoded samples were
pooled and sequenced in two lanes of the Illumina
HiSeq2000 using 100 bp paired-end reads. Alignments
of Illumina data to the A. mexicanus genome ver. 1.0.2
[31] were created with the BWA-mem algorithm in
bwa-0.7.1 [93]. The Genome Analysis Toolkit v.3.3.0
(GATK) and Picard v1.83 (http://broadinstitute.github.
io/picard/) were used to filter alignments in accord with
GATK Best Practices [94]. Hard filters were applied sep-
arately to SNPs and indels/mixed sites using the Variant-
Filtration and SelectVariants tools to remove low
confidence calls from the dataset. Extensive details of
sample collection and population genomic analyses are
provided in (Herman et al. submitted) which includes
additional samples. Samples used in the analyses pre-
sented here were submitted to the Project Accession
Number: SRP046999 [38].
We employed multiple measures to identify regions of

exceptional genomic divergence between cavefish and
surface fish populations and to identify regions poten-
tially under positive selection in the cavefish. For all
population genomic measures, we excluded masked re-
petitive elements, indels (if present in any of the core set
of samples), and 10 bp surrounding the bases affected by
each indel. We used the masking_coordinates.gz file
available for the A. mexicanus genome v1.0.2 though
NCBI genomes FTP and performed the following mea-
sures with GATK-processed data on a per-gene basis,
unless otherwise noted. We focused on multiple popula-
tion genomic statistical metrics DXY, FST, and hapFLK.
Specifically, we conducted an enrichment tests on the
positively selected ASD-genes relative to the rest of the
genome using only the results from hapFLK.
We defined ‘divergence outliers’ as genes that were

among the top 5% across the genome for FST, the top
20% for DXY (as this is a less sensitive measure than FST)
and/or exhibited significant p-values using the program
hapFLK. The top 5% is commonly used as a cut-off in
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outlier analyses [95]. The cut-off for DXY as the top 20%
was chosen as a less stringent criteria than for FST be-
cause this metric is less sensitive to allele frequency
shifts [52]. Across SFARI genes Category 1–4, only 35
genes out of 113 total outlier genes were defined as out-
liers solely by the criteria of being in the top 20% for
DXY, and these were mainly used in the IPA analysis. We
also redid IPA analysis with 5% as the cut-off for DXY

and obtained similar results. These two metrics exhibit
different sensitivities and assumptions (reviewed in [95]).
For example, relative measures of divergence (e.g. FST)
[96] detect divergent regions between two populations,
yet may also detect outliers in low diversity regions that
are false positives. Thus, we interpreted any outliers de-
fined by relative measures of divergence in the context
of pairwise nucleotide diversity (i.e. Pi), which is a
measure of diversity within the populations. Absolute
measures of divergence (DXY) [52], which are not con-
founded by low diversity, are not as sensitive to biologic-
ally meaningful divergence as relative measures [52] and
may lead to false negatives. Thus, we used a combin-
ation of evidence to understand the molecular evolution
of ASD-genes.
To identify genes in the top 5% for FST and top 20%

for DXY, we performed dense rankings where each meas-
ure (e.g. Pi surface, Pi cave, FST and DXY) was ranked for
each gene in the genome. The higher the ranking, the
higher the value was for that measure with dense ranks
(e.g. 0.02, 0.03, 0.04, 0.04 was ranked 1, 2, 3, 3). To avoid
issues in regions of low diversity, we excluded genes that
were the lowest ranked 500 genes for Pi in the surface
population as these genes may represent regions of low
recombination in the genome. In addition, to measures
of absolute and relative divergence, we also implemented
the program hapFLK, which focuses on differences of
haplotype frequencies between populations (see below).
For hapFLK, we focused on genes with at least one
hapFLK P-value that was less than 0.05. Due to the use
of multiple metrics (e.g. DXY, FST, hapFLK), we classified
a focal psychiatric disease-related gene as a divergence
outlier if the gene met any of the criteria of top 5% of
genes for FST, the top 20% for DXY and/or had one
P-value < 0.05 for hapFLK within the gene (Table 3,
Additional files 6 and 7).

Basic population genomic metrics
We used VCFtools [97] to calculate Pi and FST and
custom python scripts to calculate these metrics on a
per-gene basis. We identified the allele counts per popu-
lation with VCFtools and used these for subsequent DXY

calculations. For all metrics, we only used sites that
contained six or more individuals per population (see
Additional file 7). For FST and DXY, we focused on
comparisons between Pachón cavefish and surface fish

(Río Choy population). The Río Choy surface fish repre-
sent the population closest in our population genomic
sampling to the surface fish population from Texas used
in the current study [98].

hapFLK
hapFLK is an explicit test for positive selection and de-
tects changes in haplotype frequencies that exceed what
is expected for genetic drift given a hierarchical popula-
tion structure [53]. hapFLK may be robust against bot-
tlenecks and migration, and in analyses of various
selective sweep measures across regions of known
sweeps in dogs, hapFLK detected every focal sweep [95].
We used hapFLK ver. 1.3 https://forge-dga.jouy.inra.fr/
projects/hapflk [53] with 45 Astyanax samples from five
total populations (6–10 individuals per population)
and two additional outgroups and included the
following parameters: 30 haplotype clusters (-K 30),
20 EM runs to fit the LD model (−nfit = 10), and
unphased data. P-values were estimated by fitting a
standard normal distribution genome wide in R (Table 3,
Additional file 7) [53].

Quantitative PCR
From the lab-reared individuals, we anesthetized (with
0.5 mg/ml of buffered MS222 in ice-cold water) four in-
dividuals each at 1 month, 2 months, and 4 months old
and two individuals at 12 months old from both the
surface and Pachón cavefish populations. Whole brains
from each individual were then carefully dissected out in
ice-cold PBS [99] and collected into a pre-chilled
1.5 ml-tube on dry ice. The brains of each were homoge-
nized in 1 ml QIAzol Lysis Reagent (Qiagen, Valencia,
CA) by using a Micro Tube Homogenizer System
(Wilmad-LabGlass, Vineland, NJ). The total RNA extrac-
tion was performed by using the RNeasy Plus Universal
kit (Qiagen) with an elution volume of 20 μl. RNA qual-
ity and quantity were determined based on electrophor-
esis and Qubit 3.0 Fluorometer system (Thermo Fisher
Scientific, Waltham, MA), respectively. iScript gDNA
Clear cDNA Synthesis kit was used to eliminate the car-
ryover of genomic DNA, followed by synthesis of cDNA
by using iScript Reverse Transcription Supermix for
RT-qPCR (Bio-Rad Laboratories, Hercules, CA).
The quantitative RT-PCR for the genes associated with

ASD was performed. Three housekeeping genes eef2.1a,
rsp18 and b2m were used to normalize the quantifica-
tion cycle (Cq). Quantitative real-time PCR was per-
formed on a CFX96 Touch Real-Time PCR Detection
System (Bio-Rad Laboratories) using the SsoAdvanced
Universal SYBR Green Supermix (Bio-Rad Laboratories).
Cycling parameters were: 1 cycle of 95 °C for 15 s, and
40 cycles of 98 °C for 5 s and 60 °C for 30 s. After
quantitative real-time PCR, the melt curve analysis was
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performed between 65 °C – 95 °C with 0.5 °C step. Dur-
ation of each step was 2–5 s. This identified the anneal-
ing temperature for each PCR product, which informs
the target specificity of the PCR reaction by monitoring
whether the single length of PCR products (i.e. a single
sharp peak of melting curve) was amplified [100]. Mea-
surements of gene expression at each developmental
stage (1 month, 2 months, 4 months and 12 months old)
were technically repeated three times by using three
wells of a PCR plate. Geometric average of Cqtarget was
subtracted by the geometric average of three repeats of
three housekeeping genes at the same developmental
stage (Cqreference: eef2.1a, rsp18 and b2m), yielding ΔCq.
Relative expression (ΔΔCq) of each gene at each target
tissue (i.e. brain of 1, 2, 4 or 12 months from surface fish
or cavefish) was then calculated by subtracting the ΔCq
of cavefish brain at 1 month old from ΔCq of target tis-
sue (Additional file 5). The sequences for PCR primers
are reported in Table 4.

Drug treatment
ASD drugs were selected according to clinical trials and
practices [62, 63, 101, 102]. Drug concentrations were de-
termined based on previous experiments in model species
[103–105]. Fluoxetine (1.0–28.5 μM; Sigma-Aldrich, St.
Louis, MO), clozapine (0.1–12.5 μM; Selleck, Houston,
TX), naltrexone (5–10 μg/body g; Selleck), aripiprazole
(1–5 μM; Selleck), or risperidone (1–5 μM; Selleck) were
delivered via bath application with PBS solution in

conditioned water (for fluoxetine), via 0.1% dimethylfor-
mamide in conditioned water (for clozapine, aripiprazole
and risperidone), or via injection through the body cavity
(for naltrexone; less than 20 μl with a 27G insulin syringe)
(Table 5). Injections were performed under anesthesia
using 66.7 μg/ml of MS-222 (Tricaine, Sigma-Aldrich, St.
Louis, MO). For sleep and hyperactivity assays, fish were
bath-treated or given an intraperitoneal injection with
each drug at Zeitgeber Time 1 (ZT1). Information for
each drug is reported in Table 5. We started video record-
ings right after the time of injection (ZT2) then recorded
for 24 h to measure sleep and hyperactivity levels (see
below). For adherence assays (vibration attraction behav-
ior; VAB assay, see below), fish were treated with the focal
drug for at least 16 h (overnight), and then subjected to a
3-min behavioral assay (see Table 5). F1 hybrids of surface
fish and cavefish were also assayed under the treatment of
fluoxetine, clozapine and naltrexone, however, we had
technical difficulties in raising sufficient numbers of F1 hy-
brids to also test hybrids for the aripiprazole and risperi-
done treatments.

Sleep and hyperactivity
Fish were recorded under non-drug treated-conditions
in a custom-designed 10.0-L acrylic recording chamber
(457.2 × 177.8 × 177.8 mm in length × width × height,
respectively, with 6.4 mm thickness) with opaque parti-
tions that allow for 5 individually housed fish per tank
(each individual chamber is 88.9 × 177.8 × 177.8 mm).

Table 4 PCR primers used in quantitative RT-PCR study

Primer Name Ensemble Gene ID Forward Sequence Reverse Sequence

shank3b ENSAMXG00000009680 AGTATGACCCACGGCTAGAG CGATCACATAATCACTGTAGGAGG

shank3a ENSAMXG00000004290 CGAATTACACCAGCAGAAATCAG CCTCAGTAGCTCCGAAAGAC

adnp2a ENSAMXG00000006355 AGAGTCACTGGATGTGATTCAC TTCTTGGTTCAAGTCGATGATCTC

suv420h1 ENSAMXG00000020652 AAATGAACACCAGGTTTCGAC AGAAAGTGATGTCTGCTCCA

kmt5b ENSAMXG00000017258 GGCTGATGATTGAAACAGAGAC CATGTCGTCTTCCATTTACTACC

pogza ENSAMXG00000020522 TATTACACGCGTATTTCAGGG TAGACACAGATATCCACGAAGAG

ptena ENSAMXG00000010994 CGGGACTACTTGATTCTAACTCTG TACAACTTCACCTTAAAGTTCGGG

scn2a ENSAMXG00000004964 TCTTCACCTACATCTTCATCCTG CCAAAGACACATCTACAATGAGG

b2m ENSAMXG00000011344 TTCACACCTCAGAAGAACGA ACTGCATTCTCCATCTGGT

eef2a.2 ENSAMXG00000018020 TATCATTGAGGAGTCTGGAGAG TGGGTCGGATTTCTTAATTGG

rps18 ENSAMXG00000007922 CCATCAAGGGTGTTGGTAGG TGCATAATGGTCACCACCC

Table 5 Drug information used in this study

Drug Name Commercial Name Target Application Method References

Aripiprazole Abilify Partial agonist for the receptors of dopamine, serotonin and others Bath (1–5 μM) [62]

Risperidone Risperdal Antagonist for the receptors of dopamine, serotonin and others Bath (1–5 μM) [62, 63]

Fluoxetine Prozac Selective serotonin reuptake inhibitor (SSRI) Bath (1.0–28.5 μM) [62]

Clozapine Clozaril Antagonist for the receptors of dopamine, serotonin and others Bath (0.1–12.5 μM) [62, 63]

Naltrexone Revia Opiate antagonist Injection (5–10 μg/g) [63]
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This setup is approximately the same as used in [24].
Briefly, the recording chamber was illuminated with a
custom-designed IR LED source for 24 h and with a
white LED light that was set on a 12 h on, 12 h off cycle
(Lampux 12 V Flexible Waterproof 5050 LED Strip
Lights-Daylight White, Lighting EVER, Las Vegas, NV).
White light was turned on at 7:00 am and turned off at
7:00 pm every day. Behavior was recorded after 4–5 days
of acclimation for 24 h beginning two hours after the
light was turned on (Zeitgeber time 2). Videos were re-
corded at 15 frames/sec using a USB webcam that was
fitted with a zoom lens (Macro 1.8/12.5-75 mm
C-mount zoom lens, Kowa American Corp., Torrance,
CA). An IR high-pass filter was placed between the cam-
era and the lens to block visible light. Videos were cap-
tured by the software, Virtualdub (Version 1.10.4, http://
www.virtualdub.org/) with x264vfw codec and were sub-
sequently processed using SwisTrack (Version 4, https://
en.wikibooks.org/wiki/SwisTrack). Water temperature
was monitored throughout the recordings, and no de-
tectable differences were observed during the light and
dark periods (24.0 °C ± 0.5 °C) [24]. The visible light dur-
ing behavior recordings was approximately 30–100 Lux.
Tracking parameters for detection were set as follows: the
detection was set to ‘subject brighter than background’
and brightness contrast from 20 to 255; current frame
weight set to 15; video sample rate set to 15 frames/sec,
and pixel smoothing was turned off. We monitored sleep,
activity, and arousal threshold via previously established
protocols in A. mexicanus [24]. Sleep state was analyzed
according to a previous study [24, 106]. Data was subse-
quently processed using custom-written Perl scripts
(v5.10.0, www.perl.org) and Excel macro (Microsoft,
Redmond, WA).

Adherence to a particular vibration stimulus
We assayed VAB as described previously [19, 77, 107].
Briefly, We have acclimated fish individuals for 4–5 days
prior to the assay in the cylindrical assay chamber
(325 ml glass dish, 10 cm diameter 5 cm high, VWR,
Radnor, PA, USA) filled with conditioned water
(pH 6.8–7.0; conductivity 600–800 μS). During the as-
says, vibration stimuli were created by using a glass rod
that vibrated at 35 or 40 Hz. The number of approaches
(NOA) to the vibrating rod was video-recorded during a
3-min period under infrared illumination and counted
using ImageJ 1.50o software (NIH, Bethesda, MD, USA).

Statistics
For statistical comparisons, we performed parametric
tests including student’s t-tests and one-way or two-way
ANOVAs to compare between surface and cavefish. We
performed Levene’s equality of variance test and visually
inspected the distribution of the data, to look for

violations of the assumptions of equal variance and nor-
mality. If violations were detected, we transformed the
data by applying square-root or log transformation, ac-
cordingly [108]. Post-hoc Dunnett t-tests and Bonferroni
correction were used for understanding which contrasts
were significant. Above calculations were conducted
using IBM SPSS 24.0.0.1 software (IBM, Somers, NY,
USA) and all statistical scores are available in Additional
files 10 and 11 or figure legends.
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SFARI genes (Category 1 to 4 and Category S in in March 2017).
(XLSX 217 kb)
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FST, top 20% for DXY, and P < 0.05 for hapFLK). (XLSX 466 kb)

Additional file 8: Ingenuity Pathway Analysis Comparison Analysis
revealed enriched pathway categories in diversified SFARI genes in
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