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Abstract

and evolutionary rate) of serially-homologous vertebrae.

selection for locomotion and static body support.

Background: The axial skeleton consists of repeating units (vertebrae) that are integrated through their development
and evolution. Unlike most tetrapods, vertebrae in the mammalian trunk are subdivided into distinct thoracic and
lumbar modules, resulting in a system that is constrained in terms of count but highly variable in morphology. This
study asks how thoracolumbar regionalization has impacted adaptation and evolvability across mammals. Using
geometric morphometrics, we examine evolutionary patterns in five vertebral positions from diverse mammal species
encompassing a broad range of locomotor ecologies. We quantitatively compare the effects of phylogenetic and
allometric constraints, and ecological adaptation between regions, and examine their impact on evolvability (disparity

Results: Although phylogenetic signal and allometry are evident throughout the trunk, the effect of locomotor ecology
is partitioned between vertebral positions. Lumbar vertebral shape correlates most strongly with ecology, differentiating
taxa based on their use of asymmetric gaits. Similarly, disparity and evolutionary rates are also elevated posteriorly,
indicating a link between the lumbar region, locomotor adaptation, and evolvability.

Conclusion: Vertebral regionalization in mammals has facilitated rapid evolution of the posterior trunk in response to
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Background

Disentangling the processes that lead to the evolution of
complex biological structures is one of the major aims of
evolutionary biology [1-4]. Integration between separate
component parts of anatomical structures has been in-
creasingly recognized as an important determinant of
variation on genetic, phenotypic, and evolutionary scales
[5-11]. Patterns of integration may enhance evolvability
by compartmentalizing functional units into modules, lim-
iting pleiotropic gene effects and thus promoting inde-
pendent evolution in response to divergent selective
regimes [4, 12-17]. The vertebrate axial skeleton repre-
sents the archetypal integrated structure because it is
composed of repeating, serially-homologous vertebrae that
have maintained remarkable self-similarity throughout
vertebrate history [18, 19]. Simultaneously, the subdivision
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of the vertebral column into semi-autonomous modules
(regions) has been achieved to varying degrees across dif-
ferent groups, with mammals constituting the best-known
and most-extreme example [20-24]. Thus, the vertebrate
axial skeleton provides a system with which to examine
the interaction between integration, modularity, and mor-
phological evolution over macroevolutionary timescales.
Evolution of the vertebral column is shaped not only
by integration between vertebrae (serial homology), but
also by phylogenetic and allometric constraints, as well
as adaptation to diverse ecological niches. Phylogenetic
history is a key predictor of vertebral variation, reflecting
shared genetic, developmental, or functional interactions
[25-28]. Allometry is also an important factor, as struc-
tural adaptation of vertebrae to static loading is neces-
sary to accommodate increasing size [25, 27, 29-32].
The axial skeleton is integrally involved in body support
and movement, respiration, and anchoring the head and
limbs and, therefore, is subject to selection for a variety of
functions and ecological specializations [22, 28, 33-35].
Further, evolutionary responses to these factors may be
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shaped by the modular organization of the vertebral col-
umn, resulting in serial modifications of morphological
variation and disparity [24, 26, 30, 36].

Here we examine evolution of the mammalian ‘trunk’
(thoracic and lumbar vertebrae) to understand how
regionalization of the vertebral column impacts macro-
evolutionary patterns. In most tetrapods, the vertebral
column is relatively homogenous and vertebral counts
vary widely between species. In mammals, however, the
vertebral column is constrained in vertebral count but
extremely variable in terms of vertebral morphology —
resulting in discrete regions [37—40]. Most notably, the
functional subdivision of the mammal trunk (thoracol-
umbar region) into respiratory (thoracic) and locomotor
(lumbar) regions in the synapsid forerunners of mam-
mals is a critical step in establishing the mammalian
bauplan; demarcating the origin of novel vertebral func-
tions and locomotor behaviors [20, 39, 41-44]. Whereas
the thoracic region forms part of the ribcage, facilitating
breathing and supporting the forelimb, the novel mam-
malian lumbar region is free of ribs and has been linked
with various locomotor behaviors (e.g., hunting behavior
[45], arboreality [46], posture [47, 48], running perform-
ance [49], jumping [50], swimming [33]). Therefore, the
mammal trunk provides the ideal case study for under-
standing the implications of regionalization on vertebral
variation, adaptation, and evolvability.

Our study asks how has thoracolumbar regionalization
impacted adaptation and evolvability through mamma-
lian evolution? To answer this question, we measured
vertebral morphology in a wide range of extant mam-
mals, spanning a variety of clades and sizes. We quanti-
fied the shape of five thoracolumbar vertebrae, selected
to reflect variation among and between regions, using
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influence of phylogeny, allometry, and ecology, as well
as modularity, disparity and evolutionary rates along the
column. Based on prior work, we predicted that phylo-
genetic history, allometry, and/or ecology would have
significant effects on the overall morphology of the
thoracolumbar region (Hypothesis 1), but that ecology
would have greater influence in the lumbar region (Hy-
pothesis 2). We also predicted that morphological vari-
ation would reflect the modular organization of the
thoracolumbar region (Hypothesis 3), and if modularity
and adaptation promote evolvability, that the lumbar re-
gion would display elevated disparity and evolutionary
rates (Hypothesis 4).

Methods
Specimens and sample size
Vertebrae from 52 mammalian species, including mono-
tremes, metatherians, and representatives from all major
eutherian clades, were selected to span mammalian phyl-
ogeny and to represent a broad diversity of locomotor
ecologies (Fig. 1). Although some groups are relatively
more abundant in collections (e.g., ungulates, carnivores),
we attempted to sample evenly across the mammalian tree
to avoid bias toward groups. Our sample size and selec-
tion of representatives from each major clade are compar-
able to a recent study that examined morphological
divergence and evolvability in ray-finned fishes using simi-
lar methods [17]. A phylogeny for the mammalian taxa
sampled was generated using timetree.org [51], which uti-
lizes a hierarchical synthesis of published molecular time-
trees to estimate topology and branch lengths (Fig. 1).
Specimens examined were primarily from the osteo-
logical collections of the Museum of Comparative Zo-
ology (MCZ), Harvard University (Additional file 1:

3D geometric morphometrics and compared the Table S5). Digital images of several specimens were also
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obtained from the online repositories ‘Morphosource’ and
‘Digimorph; originally collected from the American Mu-
seum of Natural History (AMNH) and the Field Museum
of Natural History (FMNH) (Additional file 1: Table S5).
All specimens analyzed were adults (based on fusion of
epiphyses), pathology-free, and with vertebrae accurately
seriated (i.e. precise identification of the anterior-posterior
position along the column).

This study utilized a broad phylogenetic sample to exam-
ine large-scale patterns across mammals. Therefore, we
used very broad groupings to tease apart large-scale influ-
ences of ecology and applied multiple ecological assign-
ments where appropriate. Information on locomotor
ecology was gathered from the literature (see Additional file
1: Table S1 for literature sources), and species were classi-
fied into four categories according to the definitions used
in previous studies [52]: terrestrial, scansorial-arboreal, fos-
sorial and semi-aquatic. We combined scansorial and ar-
boreal into a single group of climbing-specialized mammals
to increase within-group sampling. Flying (e.g. bats) and
fully aquatic (e.g. whales) taxa were not included due to
their derived locomotor habits and the highly disparate se-
lective pressures they likely encounter. A secondary
locomotor classification was also defined for taxa which
utilize multiple locomotor strategies based on behavioral
descriptions or had multiple classifications in the literature
(Additional file 1: Table S5).

To capture maximum shape variation along the verte-
bral column and compare taxa with varying vertebral
counts, five thoracolumbar vertebrae per specimen were
sampled, resulting in a total of 260 measured vertebrae.
The vertebrae selected included: the first thoracic, the
numerically mid-thoracic, the vertebra that marks the
transition from horizontally- to vertically-oriented zyg-
apophyses (diaphragmatic), the vertebra at one-third of
lumbar length (anterior lumbar), and the final lumbar
vertebra. As morphology varies strongly between verte-
bral regions, vertebrae were defined relative to regional
landmarks (e.g., first free rib, diaphragmatic, last free
rib) to enable identification of functionally homologous
positions in taxa with varying vertebral formulas (Add-
itional file 1: Figure S1). For a full description of the ver-
tebrae selected for each species see Additional file 1:
Supplemental Materials and Methods.

Data acquisition and landmarks

A three-dimensional geometric morphometric (GMM) ap-
proach was used to quantify the complex shape of the
thoracolumbar vertebrae. For structures present through-
out the column (centrum, arch, zygapophyses, neural spine)
traditional homology-based landmarks were selected to
capture shape variation (Fig. 2, Additional file 1: Table S1).
The curvature of the endplate lacks suitable features for
landmarking but is an important feature in determining
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Fig. 2 Three-dimensional landmarks collected on second lumbar
vertebra of Marmota monax. For descriptions see Tables S1 and S2.

Cu: curve

articulation of the intervertebral joints. Therefore, sliding
semi-landmarks were employed to capture the shape of the
endplate [53]. Further, some muscular processes (anapo-
physis, metapophysis, transverse process) are variably
present along the column, but represent a vital component
of vertebral morphology. To include these structures, we
adopted a redundant landmarking approach (following e.g.
[54, 55]), which uses overlapping landmarks to record the
presence or absence of serially-homologous structures
along the column (Additional file 1: Table S2). For further
details see Additional file 1: Supplementary Materials and
Methods.

Large-bodied specimens (e.g., Equus caballus) were
landmarked using a MicroScribe G2X Digitizer. For
smaller specimens, landmarks were collected from
three-dimensional models created using a Skyscan
model 1173 micro-computed tomography (CT) scanner
in the MCZ or from online repositories (see above). The
target vertebrae were manually segmented and 3D ren-
dered using Mimics software (Materialise, version 19) to
make 3D surface meshes. Thirty-eight landmarks were
placed manually using the MicroScribe or the ‘Measure
and Analyze’ feature of the Simulate menu of Mimics.
For the sliding semi-landmarks, two curves with greater
than 10 landmarks each were collected along the left and
right sides of the caudal endplate. The curves were later
resampled to five landmarks each using the function ‘digit.-
curves’ in geomorph [56, 57]. The first and last landmarks
of each curve were then replaced by single fixed dorsal and
ventral midline centrum landmarks (Additional file 1:
Table S1), ensuring symmetry when the semi-landmarks
were slid between them. Thus, a total of 44 3D coordinates
were collected for each vertebra (38 fixed landmarks and
two curves with three sliding semi-landmarks each) (Fig. 2;
see Additional file 1: Tables S1 and S2 for landmark de-
scriptions). An error study was conducted on four species
with four replicates, which demonstrated that landmarking
accuracy was sufficient to distinguish both species and ver-
tebrae using this protocol (see Additional file 1: Supple-
mentary Material and Methods, Figure S2, Table S3).
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Data analysis

All analyses were conducted in R version 3.4.2 and the
package geomorph version 3.0.5 [56, 57]. Landmark coor-
dinates were aligned using generalized Procrustes super-
imposition (GPA) with the function ‘gpagen’ to remove
size, rotation, and translation, and the semi-landmarks
were permitted to slide to maximize bending energy. To
remove asymmetry from the dataset, symmetrized Pro-
crustes coordinates were generated using ‘bilat.symmetry’.
Analyses were conducted on each of the five individual
vertebral positions, separately, and on a ‘whole-column’
dataset (all vertebral positions combined per specimen) as
described below.

Individual vertebral positions

Shape variation

GPA and Principal components analysis (PCA) were
used to visualize vertebral shape variation at the differ-
ent vertebral positions — separately — using ‘plotTangent-
Space’. Shape variation at each vertebral position was
visualized using mesh warping, based on the 3D surface
mesh of the specimen lying closest to the mean shape
for that vertebral position. Meshes were morphed to the
mean shape for each position using ‘mshape’ and ‘war-
PRefMesh’ and then to PCA extremes or ecological
grouping means using ‘plotRefToTarget’.

Phylogeny, size and ecology

The multivariate K-statistic was used to estimate phylogen-
etic signal present in the symmetrized Procrustes coordi-
nates [58, 59]. This was calculated using the function
‘physignal’ with 10,000 permutations to determine signifi-
cance. Higher K-values correspond to a stronger phylogen-
etic signal, with values greater than one indicating that
traits are conserved within the phylogeny, whereas values
less than one indicate weaker phylogenetic signal and more
convergence. To quantify the relationship between vertebral
shape, size, and ecology, we used phylogenetically-corrected
multivariate analysis of covariance (MANCOVA) in
‘procD.pgls’ [60, 61]. In this model, symmetrized Procrustes
coordinates were the dependent variables with log centroid
size (as a proxy for body size) as a covariate and ecological
grouping (Additional file 1: Table S5) as a factor. As some
taxa exhibit behaviors consistent with multiple ecological
groups, the MANCOVA was run for both the primary and
secondary ecological grouping assignments.

Modularity

Phylogenetically-corrected modularity was calculated as
the CR coefficient, a ratio of the between-vertebra co-
variation to the within-vertebra covariation that reflects
the relative independence of the vertebrae, using ‘phylo.-
modularity’ [62]. Pairwise variations in CR coefficient
along the column were visualized using ‘corrplot. To
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ensure the dataset was appropriate for this analysis, sta-
bility of the covariance matrix for each vertebra was
confirmed using random skewers analysis with 1000
bootstrap replicates (median r = 0.95) [63].

Disparity and evolutionary rate

Morphological disparity was quantified for each verte-
bral position using the ‘morphol.disparity’ function. Pro-
crustes variances for each position were calculated, with
log centroid size included as a covariate, and differences
between vertebrae were tested using permutation [53].
Further, evolutionary rates at each vertebral position
were calculated using compare.multi.evol.rates’ [64], and
the significance of between-position differences tested
using phylogenetic simulation. Confidence intervals on
disparity and rate measures were calculated based on
randomized residuals from a linear model using
‘procD.lm’ and ‘procD.pgls’.

Whole-column analysis

Shape, phylogeny, and ecology

The vertebral column, though composed of individual
vertebrae, functions as a unit and is developmentally and
evolutionarily integrated [22]. Therefore, in addition to
examining the evolution of individual vertebrae, it is also
important to consider evolutionary influences on the
whole thoracolumbar column. To examine the evolution
of multiple vertebrae simultaneously, we conducted a
combined analysis of all five vertebral positions.
Procrustes-aligned landmarks (single fit for all vertebrae)
from each of the five vertebral positions for each species
were concatenated to produce a new ‘whole-column’ co-
ordinate set. To reduce the dimensionality of the dataset,
only midline and left-side landmarks were used, result-
ing in a total of 130 landmarks for each specimen, which
is within the dimensionality range of other comparative
morphometric studies [65-67]. This ‘whole-column’
landmark set was then subjected to the shape, phylogen-
etic signal, and MANCOVA analyses described above to
examine the influence of phylogeny, size, and ecology on
total  thoracolumbar  evolution.  The  residual
randomization tests employed by ‘ProcD.pgls’ are specif-
ically designed for, and are robust to, high dimensional-
ity data [60, 68]. As each vertebra was treated separately
in the initial Procrustes superimposition, the relative
contribution of each vertebral position to the
whole-column was examined by summing the absolute
PC loadings of each landmark across the individual ver-
tebral position. Whole-column PC axes reflect shape
variation in all five vertebral positions simultaneously.
Therefore, shape variation along PC axes was visualized
by extracting loadings for each individual vertebral posi-
tions from the concatenated PC loadings, and warping
the vertebrae as described above.
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Method validation

Previous studies quantifying the shape of multiple ele-
ments simultaneously have either combined PC or rela-
tive warps scores from separate analyses to produce new
shape variables [27, 69, 70]. Due to the common land-
marking approach for each vertebra taken here, we were
able concatenate Procrustes-coordinates directly, produ-
cing a mathematically-identical shape space to that ob-
tained based on PC concatenation. To validate this
approach, we simulated five hypothetical vertebral col-
umns with serial variation based on rectangles (Add-
itional file 1: Supplementary materials and methods).
This analysis demonstrated that a morphospace based
on Procrustes concatenation was better able to distin-
guish unique column morphologies than the traditional
approach of plotting all vertebrae as independent ele-
ments (Additional file 1: Figures S3, S4), and that our
approach produces identical results to concatenation of
principal component scores (Additional file 1: Figures
S4, S5, Table S4).

Results

Whole-column shape

The thoracolumbar column functions as an integrated
unit, therefore it is important to consider variation in total
thoracolumbar morphology. Combining Procrustes coor-
dinates across five vertebral positions into a whole-column
morphospace enables taxonomic and ecological groups to
be distinguished (Fig. 3b and ¢; Additional file 1: Supple-
mental Materials and Methods). Landmarks from all the
vertebral positions contribute to whole-column variation
in the top three PCAs (those contributing >5% variance,
51% total variance), highlighting the importance of extract-
ing common patterns of variation along the column
(Table 1).
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Although Principal component axes from the
whole-column PCA represent concurrent variation in all
five vertebrae simultaneously, associated shape variation
for each underlying vertebra was visualized by extracting
the individual position loadings from the concatenated
shape (Additional file 1: Figure S6). PC1 reflects variation
from tall thoracics with large neural spines, and wide lum-
bars with elongate transverse processes (positive scores);
to vertebrae with relatively smaller muscular processes
throughout the column but larger metapophyses (negative
scores) (Additional file 1: Figure S6). Positives scores on
PC2 correspond to columns with wide-set (cervical-like)
zygapophyses on T1, strongly anticlinal (varying from
caudally to cranially directed) neural spines, and
ventrally-inclined lumbar transverse process, typified by
most euarchontoglires and some laurasiatheres (Additional
file 1: Figure S6). Negative scores on PC2 represent col-
umns with narrow-set (thoracic-like) zygapophyses on T1,
caudally-directed neural spines throughout the column,
and short, perpendicular lumbar transverse processes.

There are significant effects of phylogeny, size, and ecol-
ogy on whole-column shape, corroborating Hypothesis 1
(Table 2). Although members of some clades cluster in the
whole-column morphospace (Fig. 3b), the relatively low K
value of 0.63 indicates deviation from pure Brownian mo-
tion (Table 2). Further, the distribution of taxa suggests con-
siderable homoplasy, with certain clades (e.g., laurasiatheres)
invading multiple regions of morphospace (Fig. 3a, b).

Post-hoc comparisons of ecological groups reveal signifi-
cant differences in whole-column shape between terrestrial
and fossorial, and to a lesser extent, scansorial-arboreal spe-
cies (p =0.028, p =0.056). Taxa utilizing fossorial or
scansorial-arboreal habits tended to have low PC1 scores,
reflecting relatively small to absent (in the case of mono-
tremes) lumbar transverse processes and small neural pro-
cesses, but extremely large metapophyses (Fig. 3, Additional
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Materials and Methods). A. Phylogenetic relationships plotted to create a phylomorphospace. Cs: Chyrsochloris stuhimanni; Te: Talpa europaea; Mt: Manis
temminckii; Gg: Gorilla gorilla; Ec: Equus caballus; Lg: Lama glama; La: Lepus americanus; Fc: Felis catus. B. grouped by Superorder; C. grouped by locomotor
ecology. Ch: Choloepus hofmanni; Ee: Erinaceus europaeus; Gg: Gorilla gorilla
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Table 1 Summed loadings of landmarks from each vertebra on
the whole-column PCA

Tot Var. T1 Mid-T Dia Ant L Last L
PC1 30.0% 22.0% 23.2% 16.1% 20.6% 182%
PC2 13.5% 17.2% 9.6% 17.2% 29.6% 26.4%
PC3 7.5% 25.9% 23.5% 20.2% 16.3% 14.1%

Tot var. Total variation explained by that PC, T1 First thoracic, Mid-T mid-
thoracic, Dia diaphragmatic, Ant L anterior lumbar, Last L last lumbar

file 1: Figure S6, S7). Terrestrial taxa have high PC1 scores
indicating larger neural spines and transverse processes. Re-
peated invasion of low PC1 regions of morphospace indi-
cates convergent evolution of this morphology several
times within Mammalia in association with digging or
climbing ecologies. For example, the highly fossorial taxa
Talpa europaea and Chrysochloris stuhlmanni, (Fig. 3a: Te,
Cs) lie on the far negative PC1, despite being members of
distantly-related clades. Similarly, the pangolin Manis tem-
minckii (Fig. 3a: Mt) lies at negative PC1 near other fossor-
ial taxa (e.g., monotremes), and far from its sister group the
Carnivora.

Among the terrestrial taxa, PC2 appears to distinguish
dorsostable ungulates (e.g., Equus caballus, Llama
glama; Fig. 3a: Ec, Lg) from dorsomobile runners (e.g.,
Felis catus, Lepus americanus; Fig. 3a: Fc, La). This vari-
ation reflects elongate and obliquely oriented transverse
processes and cranially-inclined neural spines in the dor-
somobile species (high PC2), and long but perpendicu-
larly oriented transverse processes in the dorsostable
species (low PC2) (Additional file 1: Figure S6).

Gorilla gorilla and Choloepus hoffimanni are outliers
from the arboreal group, with relatively negative PC1
scores, likely relating to their suspensory mode of locomo-
tion (Fig. 3c: Ch, Gg). Similarly, the hedgehog Erinaceus
europaeus is also an outlier from the terrestrial group,
likely reflecting phylogenetic inertia as it clustered with
other ecologically-disparate eulipotyphlans (Fig. 3c: Ee),
instead of species with more similar ecologies.
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Individual vertebral shape

A more complex story is revealed when evolutionary fac-
tors are broken down by vertebral position. Although phyl-
ogeny and size have a significant effect at all five vertebral
positions, ecology has a significant effect only at the last
two positions (anterior lumbar and last lumbar) (Table 2,
Fig. 4). This finding corroborates Hypothesis 2 in suggest-
ing enhanced ecological influences in the posterior column.
Post-hoc pairwise tests indicate significant differences be-
tween terrestrial and scansorial-arboreal-fossorial taxa in
the lumbar region (Anterior: Ppyprer =0.030, Pros.
«Terr=0.033; Last: PapTerr =0.034, Pross.Terr—0.024) are
driving this pattern. In PCA space, the terrestrial group
(blue) has more negative PCl scores than
scansorial-arboreal (red) and fossorial (black) groups at the
last two vertebral positions (Fig. 4). Terrestrial taxa (nega-
tive PC1) are typified by longer neural spines and trans-
verse processes, which are cranio-ventrally deflected;
whereas arboreal and fossorial taxa are characterized by
short processes and large metapophyses (Additional file 1:
Figure S7).

Modularity

Trunk vertebrae are significantly modular, both with
(CR = 0.798, p = 0.001) and without (CR = 0.748, p =
0.001) phylogenetic correction, indicating that despite
strong covariation along the column vertebrae can still
evolve somewhat independently. The CR ratios are
below one, suggesting relative independence between
vertebral positions. While between-vertebra modularity
based on raw data reflects a simple relationship with ver-
tebral position (closer vertebrae more integrated), phylo-
genetic modularity reflects are more complex pattern
(Fig. 5a). The first three positions (T1 to diaphragmatic)
and last two positions (anterior and last lumbar) have
higher CR values, and thus are less independent than
any other combinations. This supports the prediction
that thoracic vertebrae and lumbar vertebrae form
semi-independent modules (Hypothesis 3).

Table 2 Effects of phylogeny, size, and ecology on whole-column morphology and individual vertebral positions

Vertebral Position Phylogeny Allometry Ecology Ecology?2

K p-val. Rsq p-val. Rsq p-val. Rsq p-val.
Whole Column 0.63 0.001 0.12 <0.001 0.09 0.012 0.08 0.032
First Thoracic 0.65 0.001 0.16 <0.001 0.07 0.112 0.07 0.174
Mid Thoracic 0.72 0.001 0.14 <0.001 0.08 0.086 0.08 0.066
Diaphragmatic 0.54 0.001 0.10 <0.001 0.05 0.535 0.06 0.331
Second Lumbar 0.63 0.001 0.13 <0.001 0.11 0.006 0.08 0.051
Final Lumbar 0.66 0.001 0.10 <0.001 0.13 0.001 0.09 0.048

Phylogenetic signal was measured using the K-statistic. Allometry, ecology, and their interaction from a phylogenetic MANCOVA. Rsq R-squared value. P-val. p

value, Ecology2 secondary ecology assignment used
Bold values indicate significance at the 0.05 alpha level
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Disparity and evolutionary rate

Disparity and evolutionary rate both increase posteriorly
along the thoracolumbar column. Pairwise comparisons
reveal that the lumbar positions have significantly higher
Procrustes variance than the first two thoracic positions
(Table 3, Fig. 4), corroborating Hypothesis 4. The dia-
phragmatic vertebra exhibits intermediate levels of dis-
parity. Similarly, rates of evolution are also greatest in
the posterior trunk, with the last three positions exhibit-
ing significantly higher rates than the first or mid- thor-
acic positions (Table 3, Fig. 4).

Discussion

Using geometric morphometrics, we quantified morpho-
logical variation in serially-homologous vertebrae to
examine how vertebral regionalization has impacted
adaptation and evolvability of the mammalian thoracol-
umbar column. Although the effects of phylogeny and
size appear to be consistently important throughout the
mammalian trunk, the evolutionary response of vertebral
morphology to ecology is partitioned between vertebral
positions, implicating vertebral regionalization as an im-
portant mechanism facilitating adaptation of the verte-
bral column to divergent ecological and locomotor
functions.

Phylogeny and size constraints

Similarity due to shared common ancestry (‘phylogeny’)
is a major factor driving the patterns of morphological
variation among species. The results presented here sup-
port previous work demonstrating the importance of
phylogeny to vertebral variation [25, 27, 31]. Recovered
K-values ranged between 0.55 and 0.65, indicating that
although the effect of phylogeny was significant in shap-
ing mammalian vertebral morphology, the variation in
structure differed from that expected under the null hy-
pothesis of Brownian motion [58, 59]. Variation in size
places structural constraints on the axial skeleton due to
its role in resisting gravitational loads [28, 30, 71], result-
ing in allometry in axial structure and function within
groups (e.g., felids [31, 72, 73], bovids [25, 32], and

Table 3 Pairwise p-values for between-position differences in
disparity (upper) and evolutionary rate (lower)

Disparity
T Mid-T Dia Ant L Last L
Evo. Rate T1 1.000 0.768 0.084 0.029 0.008
Mid-T 0.001 1.000 0.051 0.014 0.002
Dia 0.025 0.001 1.000 0.638 0327
Ant L 0.012 0.001 0.761 1.000 0621
Last L 0.022 0.001 0931 0.807 1.000

T1 First thoracic, Mid-T mid-thoracic, Dia diaphragmatic, Ant L anterior lumbar,
Last L last lumbar
Bold values indicate significance at the 0.05 alpha level
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kangaroos [27]). We further confirm this finding on a
broader evolutionary scale by showing a significant influ-
ence of size on both the whole-column and individual
vertebral positions in our cross-mammalian sample
(Table 2).

Ecological effects

Mammals employ diverse locomotor strategies to exploit
their environment, which is often reflected in their post-
cranial anatomy [52, 65, 74-78]. Our results indicate a
significant effect of locomotor ecology in the thoracol-
umbar column, even after phylogenetic and size correc-
tion (Table 2). The importance of the axial system in
locomotion is highlighted by the major patterns of func-
tional variation recovered in this analysis. The most
striking trend in both the whole-column analysis (Fig. 3),
and in the lumbar vertebrae (Fig. 4), was the contrast
between terrestrial and fossorial/scansorial-arboreal
morphologies. Interestingly, scansorial-arboreal and fos-
sorial taxa partially overlapped in morphospace. This
may reflect some overlap between these behaviors in
certain taxa (e.g., Tamandua tetradactyla, Erithizon dor-
satum, Manis temminckii), or similar functional de-
mands placed on the axial skeleton by these seemingly
disparate ecologies.

We hypothesize that the morphological patterns de-
tected here reflect the relative importance of asymmetric
(running) gaits in terrestrial taxa over symmetric
(slower) gaits in fossorial/scansorial-arboreal species.
Terrestrial taxa were typified by high PC1 scores in the
whole column analysis, indicating elongated neural
spines and transverse processes, whereas fossorial/scan-
sorial-arboreal taxa tended to have lower PCI1 scores
consistent with well-developed metapophyses (Add-
itional file 1: Figure S6). Enlarged metapophyses provide
insertions for mm. transversospinalis and deep portions
of M. longissimus dorsi in therians [28], whereas M.
longissimus dorsi is almost entirely absent in mono-
tremes [79]. Therefore, the enlarged metapophyses in
fossorial and some scansorial-arboreal groups may re-
flect enhanced stabilization of the trunk against strong
limb motions during digging or climbing via mm. trans-
versospinalis (e.g., m. multifidus) and deeper insertions
of M. longissimus [28], as well as restricted use of asym-
metric gaits (which require an alternate arrangement of
axial musculature) during non-terrestrial locomotion in
these taxa.

Kinematic and anatomical data support this hypothesis.
Comparative anatomical analyses of opossums, fossorial
armadillos, and suspensory-arboreal sloths demonstrated
significant increases in the size of mm. transversospinalis
and m. iliocostalis in the fossorial and arboreal species,
with a relative reduction of M. longissimus [80, 81]. Like-
wise, kinematic data from the sloth (Choloepus didactylus)
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show both the absence of asymmetric gait-use, and reduc-
tion of sagittal bending in favor of lateral and torsional
motion during arboreal locomotion relative to typical
mammalian gaits [82]. Together, these data suggest that
enlargement of m. transversospinalis and m. iliocostalis
stabilizes the trunk against sagittal and lateral forces gen-
erated during digging and climbing behaviors, and that re-
duction of M. longissimus reflects the lack of asymmetric
gaits that depend upon sagittal motions [80-82]. This
suspensory-arboreal locomotor specialty is reflected in the
divergent vertebral morphology of the sloth examined in
this study, which lies at the minimum of both PC1 and
PC2. Our data provide osteological evidence that the link
between epaxial myology and behavior may be widespread
among mammals, and bony features (e.g., enlarged meta-
pophysis relative to neural spine and transverse processes)
may be useful for identifying fossorial and arboreal behav-
iors in the fossil record.

Locomotor adaptation and evolvability in the lumbar region
Although there was a significant influence of phylogeny
and size throughout the trunk, variation associated with
locomotor ecology was focused in the lumbar region
(Table 2). The strong correlation of ecology and lumbar
morphology reflects the important role of the lumbar re-
gion in mammalian locomotion. Whereas most tetra-
pods emphasize lateral bending of the trunk during
locomotion, mammals employ sagittal bending during
asymmetric gaits (e.g., galloping, bounding) or during
leaping and jumping [50, 83, 84]. This specialized mobil-
ity of the spine has been posited to be associated with
the evolution of a ribless lumbar region because sagittal
motions are restricted to the posterior trunk (though
they are not perfectly correlated with the thoracolumbar
transition), and the vertical orientation of the zygapoph-
yses in this region is thought to facilitate sagittal bending
[83, 85]. In addition to the strong effect of ecology, there
is also an increase in morphological disparity and evolu-
tionary rates in the posterior trunk (Fig. 4). These results
suggest natural selection for locomotor efficacy may be
playing a role in driving rapid morphological evolution
in the lumbar region, resulting in the acquisition of new,
diverse morphologies.

A link between lumbar shape, locomotor ecology, and
disparity has been proposed at a smaller phylogenetic
scale within Felidae (cats) [31, 45]. However, unlike the
felid dataset, which indicated significant ecological signal
in the lumbar and diaphragmatic (transitional) regions, we
did not find a significant correlation at the diaphragmatic
position (Table 2, Fig. 4). Therefore, we hypothesize that
the posterior thoracic vertebrae may be variably recruited
into locomotor function with the lumbar region between
taxa. This idea is supported by kinematic data showing
that the cranial extent of sagittal bending during running
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varies, including posterior thoracics in some species but
restricted to the lumbar region in others [83]. Due to their
highly dorsomobile gait, felids likely involve the diaphrag-
matic region during running, resulting in the correlation
between locomotor ecology and diaphragmatic morph-
ology [86, 87].

Gradational selection and modularity in the mammal trunk
Relative to most other tetrapods, the mammalian verte-
bral column is strongly differentiated into regions with
distinct morphologies. Two essential components are re-
quired to explain this heterogeneity: disparate selective
regimes and modularity. Disparate selective regimes may
be generated by selection gradients formed along the
vertebral column. Due to its anatomical connection be-
tween the forelimb and hind limb, and its elongate
structure, biomechanical forces in the trunk (and the
vertebral column in particular) act in a strongly grad-
ational manner. For example, mediolateral forces gener-
ated by the pelvis and hind limb during locomotion
form a decreasing force gradient — from high caudally to
low cranially [88]. Likewise, the ventral ‘sagging’ forces
placed upon the trunk due to support of body mass be-
tween the limbs gradually reach a peak at the mid-trunk
[28, 89], and sagittal bending contributing to pelvic dis-
placement during mammalian asymmetric gaits in-
creases posteriorly along the trunk [83]. These forces
may generate highly heterogenous selection regimes for
vertebrae at different positions, such that the selection
pressures acting upon each vertebra may form a gradient
(Fig. 6a, arrows), providing impetus for divergent evolu-
tion along the column.

Serially-homologous structures tend to covary strongly
due to shared developmental origins, which can act as a de-
velopmental constraint on intracolumn variation [14, 90].
However, modularity, and the subdivision of the column
into regions, provides a mechanism for limiting or modu-
lating this constraint. In Mus, anteroposterior expression of
Hox genes correlate with craniocaudal region boundaries in
adult morphology, implicating these genes in controlling
vertebral regionalization [91, 92]. Further, knock-out exper-
iments suggest that Hox10 is crucial for patterning the rib-
less lumbar region in mammals [93]. This underlying
developmental modularity is reflected by the evolutionary
phenotypic modularity across the broad range of mammal
taxa examined here, (Fig. 5, [23]), providing a mechanism
for partitioned evolutionary responses to gradational selec-
tion (Fig. 6a).

Compared to mammals, the extinct forerunners of
mammals, the non-mammalian synapsids, exhibit rela-
tively homogeneous vertebral columns with little re-
gional differentiation [39, 44, 94]. This suggests stronger
integration between vertebrae (Fig. 6b), more uniform
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Fig. 6 Hypothesized relationship of selection and modularity in the
axial skeleton. The strength of selection may vary along the vertebral
column (length of arrows, a, ), but the evolutionary response to that
selection is modulated by integration patterns (shading on arrows).
Four different evolutionary scenarios are hypothesized. a Modularity
and gradational selection. Selection varies along the column and the
selective regimes of different modules may diverge (stronger in the
red zone than the yellow zone) due to limited integration between
red and yellow modules. Such a scenario is proposed to explain the
heterogenous vertebral column of mammals. Homogeneous vertebral
columns may result from either increased integration, uniform
selection or both. b Integration and gradational selection. Selection
regimes vary along the column, but morphological variation is muted
by strong integration between vertebrae. ¢ Modularity with uniform
selection. Although the potential for generating evolutionary variation
between vertebrae exists, selection maintains uniformity along the
column. d Integration with uniform selection. Both factors limit
craniocaudal variation. Circles: vertebrae; shaded boxes (yellow, red,
grey): modules; colored arrows: selective pressure; greyed-out arrows:

selective pressure muted by serial integration

selection (Fig. 6¢), or a combination of these factors (Fig.
6d). Recent analyses of subtle gradients in vertebral
morphology suggest that basal synapsids had fewer ver-
tebral regions than crown therians, indicating that they
may also have been less modular [44]. The appearance
of the ribless lumbar region in Mesozoic mammals has
been used to infer shifts in Hox function that could sig-
nal increasing vertebral modularity in mammalian evolu-
tion [95]. Although the evolution of vertebral function
in fossil synapsids is poorly understood, basal members
of the group likely lacked asymmetric gaits and sagittal
vertebral flexion [39, 96]. Therefore, therian mammals
are derived in terms of both modularity and function,
and either or both factors may play a role in the evolu-
tion of vertebral heterogeneity. Modularity itself may
arise either by ‘variational adaptation’ — in which the
evolution of reduced covariation between regions is a
direct response to divergent selective regimes — or from
the indirect erosion of developmental-genetic interac-
tions between regions in response to selection for
phenotypic robustness against pleiotropy [14]. Further
work examining vertebral patterning and the relation-
ship between regionalization and vertebral function in
synapsids is required to tease apart this complex issue.

The data presented here suggest that locomotor selec-
tion for sagittal bending acting on the posterior trunk in
mammals exploits modular variation to enable divergent
evolution of vertebral regions. Modularity may lead to
increased population-level and macro- evolutionary rates
by aligning the genetic variation with the direction of se-
lection, and limiting the interference between regions
adapted for different functions [4, 15]. Thus, the serial
morphology of the mammalian vertebral column reflects
both the gradational selection and the integration pat-
terns imposed by its modular structure.
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Conclusions

Relative to other tetrapods, mammals have highly differ-
entiated thoracic and lumbar trunk regions. Here we
demonstrate that modularity of the thoracolumbar col-
umn in mammals is accompanied by divergence of evo-
lutionary responses in serially homologous vertebrae.
Overall, vertebral shape is influenced by phylogeny, size
and ecological specialization. However, the important
role of the mammalian lumbar region in locomotion is
reflected in enhanced ecological adaptation. More sig-
nificantly, our data show that elevated adaptability of the
posterior trunk across mammals is linked with increased
disparity and evolutionary rates. For example, evolution
of fossorial and arboreal behaviors across the mammal
tree resulted in repeated convergence of lumbar morph-
ologies linked with the loss of asymmetric gaits. Strong
gradational selection for behaviors such as these,
coupled with modular variation, likely facilitated rapid
and disparate evolution of the lumbar region in
mammals.
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