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Flightless birds are not neuroanatomical
analogs of non-avian dinosaurs
Maria Eugenia Leone Gold1,2,3* and Akinobu Watanabe3,4,5

Abstract

Background: In comparative neurobiology, major transitions in behavior are thought to be associated with
proportional size changes in brain regions. Bird-line theropod dinosaurs underwent a drastic locomotory shift from
terrestrial to volant forms, accompanied by a suite of well-documented postcranial adaptations. To elucidate the
potential impact of this locomotor shift on neuroanatomy, we first tested for a correlation between loss of flight in
extant birds and whether the brain morphology of these birds resembles that of their flightless, non-avian
dinosaurian ancestors. We constructed virtual endocasts of the braincase for 80 individuals of non-avian and avian
theropods, including 25 flying and 19 flightless species of crown group birds. The endocasts were analyzed using a
three-dimensional (3-D) geometric morphometric approach to assess changes in brain shape along the dinosaur-bird
transition and secondary losses of flight in crown-group birds (Aves).

Results: While non-avian dinosaurs and crown-group birds are clearly distinct in endocranial shape, volant and
flightless birds overlap considerably in brain morphology. Phylogenetically informed analyses show that locomotory
mode does not significantly account for neuroanatomical variation in crown-group birds. Linear discriminant analysis
(LDA) also indicates poor predictive power of neuroanatomical shape for inferring locomotory mode. Given current
sampling, Archaeopteryx, typically considered the oldest known bird, is inferred to be terrestrial based on its endocranial
morphology.

Conclusion: The results demonstrate that loss of flight does not correlate with an appreciable amount of
neuroanatomical changes across Aves, but rather is partially constrained due to phylogenetic inertia, evident from sister
taxa having similarly shaped endocasts. Although the present study does not explicitly test whether endocranial
changes along the dinosaur-bird transition are due to the acquisition of powered flight, the prominent relative
expansion of the cerebrum, in areas associated with flight-related cognitive capacity, suggests that the acquisition of
flight may have been an important initial driver of brain shape evolution in theropods.
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Background
Major behavioral transitions often correlate with neuro-
anatomical changes because novel sensory inputs and
motor control pathways can form new or more robust
connections, increasing the volume and density of asso-
ciated regions of the brain [1–5]. One such evolutionary
transition, from non-volancy to powered flight, has been
acquired independently by three different vertebrate
groups—pterosaurs, bats, and birds [6]. Among these

clades, birds provide arguably the best system within
which to study the evolution of flight and associated
morphological adaptations because they have a long
stem lineage that is represented by a rich fossil record
[7, 8]. This record has elucidated the origins of many of
the postcranial ‘adaptations’ traditionally considered
directly related to flight and has shown that these
characters, such as the furcula and hollow long bones,
arose not at the origin of this locomotory mode—near
the appearance of Archaeopteryx lithographica—but
earlier among non-avian theropods [9–11].
The early history of neuroanatomical adaptions related

to this transition, however, is more obscure. Previous
studies of avian neuroanatomical evolution indicated
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that the avian brain is characterized by an enlarged
cerebrum and dorsoventrally flexed lateral profile. These
studies divided endocasts into distinct volumes based on
major brain regions (e.g. cerebrum, cerebellum, optic
lobe). The fossil record shows that these ‘avian-like’ cere-
bral volumes evolved at least as far back as the origin of
Maniraptora, ~ 160 Mya [11, 12]. This indicates that the
size of the brain follows the more general trend of other
‘avian’ characteristics, evolving well before the origin of
powered flight. Purely volumetric analyses, however, are
limited in their capacity to characterize morphology.
Neural pathways important in creating and regulating
locomotor behavior often are distributed differentially
among multiple regions of the brain [5], thus under-
standing the regional shape changes has the potential to
inform the evolutionary tempo and mode of fight cap-
acity along the theropod lineage.
Here, we use the loss of flight in crown group birds as

a potential reverse analogue to the acquisition of flight
in theropods. To determine if there is a link between
neuroanatomy and loss of flight, we examined the
endocasts of multiple independent pairs of flightless
birds and their closest volant relatives to test for modifi-
cations in brain shape. We then compared the endocasts
to the plesiomorphic condition in flightless, non-avian
theropod dinosaurs. We used high-resolution X-ray
computed tomographic (CT) imaging to construct
three-dimensional (3-D) digital endocasts of the cranial
cavity of a broad sample of modern flying and flightless
members of Aves (sensu [13]) and extinct non-avian the-
ropods. Shape data from these specimens were collected
using a high-dimensional geometric morphometric
(GM) approach [14–16] and they were subsequently
subjected to a suite of multivariate analyses [17, 18].
With this approach, we evaluated whether (1) the loss of
flight incurs predictable changes to neuroanatomical
shape, such as a reduction in cerebral areas known to
function in flight [5]; and (2) the endocast of modern
flightless birds returns to a shape more similar to that of
non-avian theropods than to their flying relatives.

Methods
CT imaging and digital endocast reconstruction
Taxonomic sampling included the skulls of 80 specimens
representing 51 species: 25 flying and 19 flightless
avians, and 7 non-avian dinosaurs: Alioramus altai [19]
(IGM 100/1844), Khaan mckennai [20] (IGM 100/973),
Citipati osmolskae [20] (IGM 100/978), Incisivosaurus
gauthieri [21] (IVPP V 13326), Zanabazar junior [22]
(IGM 100/1), an unnamed troodontid (IGM 100/1126
[13]) and Archaeopteryx lithographica [11] (NMNH PV
OR 37001). We CT scanned each specimen using a Gen-
eral Electric v|tome Phoenix Computed Tomography
(CT) scanner (General Electric, Heidelberg, Germany) at

the Microscopy and Imaging Facility at the AMNH or
the high-resolution source at the University of Texas at
Austin High-Resolution X-ray Computed Tomography
Facility (Additional file 1: Tables S1 and S2). Raphus
cucullatus (NHMUK PV A9040) [23] was scanned at the
NHMUK Imaging Facility. Scan data were imported into
VGStudio MAX v2.2 (Volume Graphics GmbH,
Heidelberg, Germany) to construct a 3-D model of the
endocranial cavity (endocast) following the protocol set
forth by Balanoff et al. [24]. Because the brain fills nearly
the entire cranial cavity in birds [25, 26], its morphology
is accurately reflected by use of an endocast [24, 27].
The 3-D models were smoothed in VGStudio MAX and
exported as PLY files for the software Landmark Editor
v3.6 to virtually place landmarks [28].

Time-calibrated phylogenetic tree
A time-calibrated tree was used to perform comparative
phylogenetic analyses on endocranial shape. For extant
birds, we constructed a topology using the data provided
online by Jetz et al. [29] (birdtree.org), pruned to include
only species sampled in the current study. The Jetz et al.
[29] trees were chosen for their dense species sampling.
Our dataset has, in some cases, multiple species that are
very closely related and the increased tip sampling of
that tree allowed us to retain all of our species.
TreeAnnotator v1.8.1 [30] was used to construct a

maximum clade credibility tree from 1000 posterior
trees based on the Hackett et al. [31] tree backbone [29].
Because some of the sampled taxa are not included in
the Jetz et al. [29] dataset, we replaced these tip labels
with the closest relatives to each of these species in our
analysis. Thus, Alle alle, Chunga burmeisteri, and Goura
cristata, and Rollandia rolland were replaced by Pingui-
nus impennis, Pelecyornis australis, Raphus cucullatus,
and Podilymbus gigas, respectively. We considered the
above listed extinct crown group avians to exist in the
Recent for the phylogeny (i.e., 0 Ma) in the context of
deep time. The dataset included Struthio molybdophanes
and S. camelus, however, only the latter was present in
the Jetz et al. [29] dataset. Both species were included
for the non-phylogenetically informed analyses (e.g. PCA
and LDA), but only S. camelus was used for the con-
struction of the time-calibrated tree and phylogenetically
informed analyses. This tree was used for the
crown-group Aves dataset (Fig. 1). For the Coelurosaur
dataset, we used Mesquite v3.02 [32] to incorporate
non-avian dinosaurs into the time-calibrated avian phyl-
ogeny based on the phylogenetic relationships proposed
by Brusatte et al. [8]. Branch lengths were calculated for
non-avian coelurosaurs based on oldest fossil ages from
the Paleobiology Database (http://www.paleobiodb.org)
in sister subclades for each internal node (e.g., the spe-
cies range for Incisivosaurus is 122.46–125.45Ma and
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for Oviraptorosauria is 130.0Ma, based on the first fossil
occurrence of Caudipteryx zoui; subtracting the first
occurrence age from the latter gives 4.55 Myr, which
is the branch length for Incisivosaurus). This combined
extant and fossil tree was used for the Coelurosaur dataset
(Fig. 1).

Landmark data
To collect landmark data, each 3-D endocranial recon-
struction was imported into Landmark Editor [28] for
digital placement of 3-D Cartesian coordinate points.
The relatively featureless surface of an endocast presents
an issue for landmark placement due to the lack of clear
surficial unions of tissues or other large features that
help define discrete landmarks [17]. We placed evenly
spaced 3-D semilandmarks on five sections of the endo-
cast (i.e., left and right cerebrum, left and right optic lobes,
and cerebellum). To do this, we first placed discrete Type
I or Type II landmarks (sensu [33], also see [34]) along
major endocranial features (e.g. the triple point between

the optic lobe, cerebrum, and cerebellum). These land-
marks were used to define patches to place sliding semi-
landmarks on each brain section. With this approach,
each patch comprises discrete landmarks anchoring the
patch boundary, 3-D semilandmarks on lines between
discrete landmarks along the surface of the endocast
model, and 3-D surface semilandmarks within the patch.
Patches of 6 × 6 sliding semilandmarks were used for each
half of the cerebrum (Fig. 2, Additional file 1: Tables S3
and S4). 4 × 4 patches were used for each optic lobe. A
single patch of 4 × 5 semilandmarks was used for the cere-
bellum. In places where the edges of neighboring patches
overlapped, we manually deleted the duplicated landmarks
in R, leaving a total of 109 landmarks. We chose the num-
ber of semilandmarks for each patch so as to capture the
shape of each lobe without oversampling it, which we con-
firmed using the function LaSEC in the LaMBDA R pack-
age [35]. The raw landmark files are available on Dryad.
The landmark data were imported into R v3.1.1 [36], and

aligned using “geomorph” v3.0.3 [37] with generalized
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Fig. 1 Time-calibrated phylogeny of taxa sampled in the study. Maximum clade credibility tree based on Jetz et al. [26] with a Hackett et al. [28]
backbone. Non-avian dinosaurs and Archaeopteryx were incorporated into the phylogeny based on fossil occurrence data from Paleobiology
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Procrustes superimposition and with sliding semiland-
marks minimizing total bending energy [15, 16]. The
aligned coordinates were imported into MorphoJ
v1.06a [38] as two datasets: 1) full sample with
non-avian and avian dinosaurs (N = 80; ‘Coelurosaur
dataset’) and 2) subsampled dataset with the crown-group
birds (N = 73; ‘Aves dataset’). An analysis using the Coel-
urosaur dataset indicated that landmark placement on
Alioramus may have been incorrect, probably due to de-
formation and lack of easily identifiable landmarks. There-
fore, a third dataset was created excluding Alioramus,
which is discussed below as the ‘Coelurosaur dataset.’ Due
to bilateral symmetry, the symmetrical component of the
shape data was used for further analyses. Species with
multiple specimens were aligned with the pooled data and
the mean shape was calculated for each species.

Analyses
We subjected each shape dataset to a principal compo-
nents analysis (PCA) in MorphoJ. Plotting the scores
associated with the first three PC axes creates a morpho-
space of the overall shape differences among specimens
and identifies the morphological changes occurring
along each axis. In addition to endocast images, ‘lolli-
pop’ diagrams were used to visualize major shape
changes occurring in morphospace along PC axes,
where the vectors indicate the direction and magnitude
of change from the mean shape. Using the “geomorph”
R package [37], we also created a phylomorphospace
based on the first two PC axes. The plot shows the cor-
respondence of phylogenetic relatedness to morpho-
logical resemblance and can illustrate morphological
innovation through the amount of morphospace ex-
plored by taxa [39]. This analysis visualizes unequal
magnitude of change per clade or branch and unequal
morphological innovation by the geometry and relative
length of the branches [39].
A dataset containing the PC axes encompassing 95%

of the total shape variation was exported from MorphoJ
and imported into R to run a linear discriminant analysis

(LDA) using the “MASS” R package v7.3–45 [40]. For
the Coelurosaur dataset, we used the first 17 PC axes
that encompass 95% of the total shape variation. This
analysis looks to maximally separate the a priori
locomotor groups (e.g. terrestrial, volant, secondarily
flightless). If the LDA is able to adequately separate the
shape data into a priori groups, then it suggests that
locomotor mode induces certain neuroanatomical
shapes across taxonomic groups. If not, then those
groups are not supported. Group membership was
cross-validated to see if the LD axes are able to correctly
predict group assignment. Two locomotor categories
(‘protoflying’ and ‘swimming’) had single members and
therefore those groups were not included in the dataset
for the analysis. The data point for these members were
subsequently projected onto the morphospace based on
LDA using the ‘predict’ function in R. We also con-
ducted cross-validation analysis to assess the ability to
correctly assign locomotory mode based on endocranial
shape.
These analyses were run twice. The first analysis was

run with crown-group avians (N = 73 specimens repre-
senting 44 species) and their locomotory mode (e.g.
volant or flightless). 'Flightlessness' among extant birds
was defined by a complete loss of lift generation, i.e., a
total inability to create sufficient lift to raise the body off
the ground for any amount of time, such as the ostrich
(Struthio camelus), dodo (Raphus cucullatus), and ka-
kapo (Strigops habroptilus) and was labeled ‘flightless’ in
these analyses. A penguin, Eudyptes chrysocome, is
present in the dataset. Penguins use subaqueous flight to
propel through the water [41] and therefore it was
placed in its own locomotion category (‘swimming’). As
it was the only specimen for the ‘swimming’ locomotor
category, it was removed from the dataset for LDA.
Therefore, the first LDA was performed with two a
priori groups: ‘volant’ (N = 37 specimens, representing
25 species), and ‘flightless’ (N = 35 specimens, represent-
ing 18 species), for a total of 72 specimens and
43 species.

Fig. 2 Landmark scheme on the endocast of Crypturellus tataupa (AMNH 604) in a) dorsal, b) ventral, c) caudal, and d) left lateral views.
Cerebrum (red), cerebellum (yellow), optic lobes (blue), landmarks on the division between cerebrum and cerebellum (orange), triple point
between optic lobe, cerebellum, and cerebrum (brown)
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The second LDA contained the original set of
crown-group birds and six non-avian dinosaurs (three
oviraptorosaurs, two troodontids, and Archaeopteryx).
The non-avian dinosaurs (excluding Archaeopteryx)
were categorized as ‘terrestrial’ because their primary
locomotory mode was not inherited from flying ances-
tors. The distinction here between ‘secondarily flightless’
and ‘terrestrial’ is important because ‘secondarily flight-
less’ indicates that the species evolved from
flight-capable ancestors, whereas ‘terrestrial’ indicates
their ancestors were never capable of volant activity. Al-
though a penguin (Eudyptes chrysocome) is present in
the dataset, it was again removed for this analysis. Simi-
larly, because of continuing debate concerning the level
of flying ability of Archaeopteryx [12, 42, 43], it was de-
fined as a ‘proto-flyer’ and was the only member of that
locomotor category. As such, Archaeopteryx was also re-
moved from the dataset for the LDA. Therefore, this
LDA was performed with three a priori groups: ‘terres-
trial’ (N = 5 specimens, each representing a single spe-
cies), ‘volant’ (N = 37 specimens, representing 25
species), and ‘flightless’ (N = 35 specimens, representing
18 species), for a total of 77 specimens and 48 species.
Once the analysis was complete, the ‘predict’ function
was used to place Archaeopteryx and Eudyptes into the
LD morphospace.
To test explicitly whether locomotory mode and other

factors, such as allometry and phylogenetic inertia, drive
predictable changes to endocranial shape, we performed
several regression analyses. First, regressions of the
symmetric component of the shape data against
log-transformed centroid size were run for each dataset
in MorphoJ using 10,000 replicates to assess the allometric
effect. Second, phylogenetically-informed least-squares
analyses on locomotory mode and shape data were
performed using the ‘procD.pgls’ function in the “geo-
morph” R package. In addition, we evaluated the effect of
phylogenetic signal using the ‘physignal’ function in the
“geomorph” R package and allometry based on
log-transformed centroid sizes exported from MorphoJ
that were used as a proxy for endocranial size [44, 45].

Results
Principal components analyses
The PCA of the Aves dataset generated 17 PC axes ac-
counting for 95% of the symmetric component of shape
variation, with the first three axes associated with 66.6%
of the variation (36.4, 16.2, and 13.8%, respectively)
(Additional file 1: Figure S1; overall distribution of data
points resemble Coelurosaur dataset, Fig. 3). The shape
of the posterior aspects of the endocast drive neuroana-
tomical changes along PC1, where positive scores
indicate an anteroventral shift in the posterior margin of
the cerebrum, a posteroventral shift in cerebellar

location relative to the cerebrum, and a posterior shift
and dorsoventral expansion of the optic lobes (Add-
itional file 1: Figure S2B). PC2 correlates with lateral and
anterior expansion of the anterior cerebrum, posteroven-
tral reduction of the cerebellum, and a poteromedial
shift of the optic lobes (Additional file 1: Figure S2C).
Importantly, the plot of PC2 versus PC1 results in no
clear visual separation between flying and flightless
birds, but rather data points tend to cluster by clade
(Fig. 3, Additional file 1: Figure S1). There is variable dir-
ectionality in shape change within pairs of
volant-flightless sister taxa. For example, there is a nega-
tive shift along PC1 in Columbiformes (from Caloenas
nicobarica to Raphus cucullatus), but a positive shift
along PC1 in Psittaciformes (from Nestor meridionalis to
Strigops habroptilus), and a positive shift in PC2 in Cariami-
formes (from Cariama cristata to Pelecyornis australis)
(Additional file 1: Figure S1). In some groups, flight-
less members radiate in multiple directions away from
volant members (e.g. Gruiformes and Anseriformes).
Within the Coelurosaur dataset the first 17 axes account

for 95% of the symmetric component of shape variation,
with the first three axes associated with 66.4% of the vari-
ation (38.7, 17.5, and 10.4%, respectively) (Fig. 3). The
shape changes corresponding to PC1 and PC2 axes are
equivalent to those in the Aves dataset. PC1 correlates
with a relative anterodorsal shift of the anterior margin of
the cerebrum, anteroventral shift of the anterior margin of
the cerebellum and relative decrease in dorsoventral
height of the cerebrum, and a posteroventral shift of the
posterior margin of the cerebellum (Fig. 3 inset endocra-
nia, Additional file 1: Figure S3B). Along PC2, more posi-
tive numbers indicate an anteroventral shift in the
anterior cerebrum, a lateral reduction of the optic lobes,
and a posterior shift and expansion of the cerebellum (Fig.
3 inset endocrania, Additional file 1: Figure S3C). The cu-
mulative effect of these shifts is an anteroposteriorly lon-
ger and mediolaterally narrower endocast towards positive
PC1 and a shorter, rounder endocast towards negative
PC1. The PC morphospace of the Coelurosaur dataset
shows no clear visual distinction between modern flying
and flightless birds, however non-avian dinosaurs, as well
as Archaeopteryx, occupy a unique region of morphospace
(Fig. 3). Plots of PC3 versus PC1 show some separation be-
tween flying and flightless taxa in both the Aves (Add-
itional file 1: Figure S4) and Coelurosaur datasets (Fig. 4),
with non-avian dinosaurs again occupying their own mor-
phospace. In both analyses, changes along PC3 are driven
primarily by the lateral expansion of the cerebrum, a ven-
tral shift of the anterior margin of the cerebrum, and a
dorsolateral shift in the optic lobe (Fig. 4 inset endocrania,
Additional file 1: Figure S5).
In phylomorphospace, the early history of the coeluro-

saurian lineage begins on the positive end of PC1 and
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shifts negatively (Fig. 3). Along PC1, Archaeopteryx oc-
cupies a position that lies between non-avian dinosaurs
and crown-group birds (Fig. 3). Many internal nodes
along the avian stem, as estimated by ancestral state re-
constructions, appear in a small section of morphospace,
which may be due to poor sampling at the base of Aves.
Radiations from this small section of morphospace con-
tain several subclades and their hypothetical ancestors
that correspond to the origin of Neoaves. The test for
phylogenetic signal indicates that phylogenetic signal is
very low, but significant, in both the Aves dataset
(Blomberg’s K = 0.04; P < 0.0001) and the Coelurosaur
dataset (K = 0.05; P < 0.0001).

Linear discriminant analysis
Based on PC axes that account for 95% of symmetric
component of shape, the morphospace constructed from
LD axes and the Coelurosaur dataset shows crown
group birds in a distinct cluster from non-avian
dinosaurs and is able to visually distinguish between
locomotory modes (Fig. 5). LD1 distinguishes non-avian
dinosaurs and crown-group birds. However, volant and
flightless crown-group birds are separated along LD2,
orthogonal to major neuroanatomical changes along the
dinosaur-bird transition. Shape changes towards negative
LD2 are anteroposterior contraction of the cerebrum,
posterolateral expansion of the cerebrum, narrowing of
the cerebellum both in terms of lateral and anteroposter-
ior extent, and an anterior and ventral shift of the optic
lobes. Interestingly, the cross-validation technique based
on LDA classifies Archaeopteryx as terrestrial with a
posterior probability of ~1 (neither flying nor secondarily
flightless, which had posterior probabilities of 3.89 e− 30

and 0.252e− 29, respectively). The Rockhopper penguin,
Eudyptes chrysocome, falls among the volant birds with a
posterior probability of 0.853, versus 0.147 for flightless
and 2.66e− 16 for running. A cross-validation analysis
indicated that some taxa were misclassified (Additional
file 1: Table S5). Rallus philippensis (two of three speci-
mens), Gallus gallus, Nestor meridionalis, Diomedea
immutabilis, Phalacrocorax penicillatus (all three speci-
mens), Coragyps atratus, Tachyeres patachonicus, Anas
platyrhynchos, and Podilymbus podiceps are all volant
birds that were classified as secondarily flightless.
Phalacrocorax harrisi (one of two specimens), Rhea
americana (one of three specimens), Pelecyornis australis,
Gallirallus rovianae (two of three specimens), Raphus
cucullatus, Tachyeres pteneres (one of three specimens),
Strigops habroptilus, and Gallirallus australis (both speci-
mens) are flightless birds that were classified as volant.
Lastly, IGM 100/1126, a troodontid, which is terrestrial,
was classified as flying. The other 53 specimens were cor-
rectly classified by this analysis. The LDA for the Aves
dataset (Additional file 1: Figure S6), shows separation
along the single LD axis between volant and flightless
birds with small overlap in value between the two locomo-
tory modes.

Covariates
The lack of parallel neuroanatomical changes associated
with the dinosaur-bird transition and volant-flightless
birds implies that shifts between these locomotory
modes incur contrasting changes to brain shape or these
shifts have not contributed substantially to neuroana-
tomical variation. To explicitly assess the impact of
locomotory mode on endocranial shape, we tested for
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the effect of locomotory mode on endocranial shape
before and after correcting for phylogenetic structure
and allometric signal. The ahistorical analyses indicate
that size has a statistically significant effect in both the
Aves dataset (R2 = 0.169; P < 0.0001) and the Coelurosaur
dataset: (R2 = 0.106; P < 0.0001). However, when ex-
amined in a phylogenetic context, both size and loco-
motion independently and together failed to reject
the null hypothesis of no effect on the shape data for
the Aves dataset (P > 0.44; Table 1). The Coelurosaur
dataset returned significant results for the effect of
size (R2 = 0.397; P = 0.049) and locomotion (R2 =
0.007; P = 0.004) separately, but not the combined
effects of size and locomotion (R2 = 0.295; P = 0.496;
Table 1).

Discussion
Our study presents several notable results regarding the
relationship between flight capacity and brain shape evo-
lution. These results, visually shown by the PC morphos-
paces, are not congruent with the hypothesis that
flightless birds revert to a plesiomorphic brain shape that
is similar to their terrestrial, non-avian relatives. In fact,
there is comparatively little shape difference between
flightless birds and their closest flying relatives (Fig. 3),
indicating that flightless birds largely retain brain shapes
more similar to their closest living relatives. Moreover,
non-volant birds do not collectively approach the
endocranial shape of non-avian theropods. Therefore,
based on visual inspection of the PC morphospace, the
neuroanatomy of flightless birds is clearly not a reverse
analogue of flightless non-avian dinosaurs.
The LD morphospace, based on axes that maximize

separation between group means, distinguishes between
non-avian and avian groups, as expected from PCA.
Importantly, it shows an overall separation between
volant and flightless birds along LD2 with some overlap
(Fig. 5). This shows that some aspects of endocranial
shape can distinguish volant and flightless birds. The
shape variation associated with LD2 implies that

flightless birds, relative to their volant counterparts, gen-
erally exhibit anteroposterior expansion of the cerebrum,
decreased dorsal convexity of the cerebrum, narrowing
of the cerebellum, and inward contraction of the optic
lobes.
Meanwhile, cross-validation analysis misclassifies the

locomotory mode of approximately 30% of the speci-
mens based on both the Aves and Coelurosaur dataset,
indicating that neuroanatomical shape is not as reliable
a neuroanatomical correlate for locomotor categories as
the LD morphospace would make it seem. Among
non-avian dinosaurs, IGM 100/1126 is misclassified as
flying (Additional file 1: Table S5). IGM 100/1126 falls
closer to the PC morphospace area of crown group birds
than the other non-avian dinosaurs and Archaeopteryx
(Fig. 3), even though it falls within the non-avian mor-
phospace in the LDA (Fig. 5). However, the small num-
ber of non-avian coelurosaurs sampled for this study (N
= 5) may simply have contributed greater degree of un-
certainty in estimating locomotory mode. Sampling add-
itional non-avian coelurosaurs through additional
discoveries of well-preserved skulls may enhance the
capacity of endocranial shape to distinguish between ter-
restrial and secondarily flightless modes. Importantly,
none of the flightless birds were misclassified as terres-
trial and based on Aves dataset, the locomotory mode of
birds is misclassified for 25 of 72 taxa. This result cor-
roborates the observation from PC morphospace that
flightless and volant birds overlap in their neuroanatom-
ical shape, but are distinct from non-avian dinosaurs.
Taken together, the results from PC morphospace and
LDA imply that although some neuroanatomical
differences may be associated with secondary loss of
flight, these changes account for very small proportion
of shape variation to be a meaningful predictor for
locomotory mode.
Furthermore, whereas ahistorical regression analyses

on both the Aves and Coelurosaur datasets indicate a
significant effect of allometric signal on brain shape,
phylogenetically-informed regression analyses indicate
that locomotory mode is not a significant predictor of
endocranial shape with or excluding allometric signal for
the Aves dataset (Table 1). The phylogenetically-informed
analysis of variance of the Coelurosaur dataset returned
significant results for the independent effect of locomo-
tory mode and size on the shape of the endocast but insig-
nificant results when tested together (Table 1). As such,
there is no evidence that locomotory mode is a strong pre-
dictor of endocranial shape when corrected for size. Taken
together, major shifts in locomotory mode have not driven
uniform neuroanatomical changes within crown-group
birds. Another possibility explaining the lack of locomotor
signal is that the divergence of more recently evolved fly-
ing and flightless avian sister taxa occurred on a much

Table 1 Results from the phylogenetically informed regression
of symmetric component of shape onto locomotory mode and
centroid size

Analysis Variable Results

R2 F P

Aves Locomotion 0.423 14.69 0.439

Log Centroid Size 0.497 40.45 0.570

Locomotion and Log Centroid Size 0.006 2.61 0.678

Coelurosaur Locomotion 0.007 0.03 <0.001

Log Centroid Size 0.397 30.90 0.049

Locomotion and Log Centroid Size 0.295 4.26 0.496
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shorter time-scale than the dinosaur-bird transition.
Consequently, many flightless lineages may not have
yet had the time to evolve clear neuroanatomical
changes that would be associated with flightlessness.
The latter scenario, however, is unlikely for paleog-
naths, which have been flightless since the early
Cenozoic [46].
It is worth noting that the shape changes in this study

only reflect surficial differences in neuroanatomy
because we employed endocasts. As such, shifts in
locomotory mode may have an impact on internal
neuroanatomy that cannot be detected through the use
of endocasts. Nevertheless, some surficial anatomy may
reflect changes occurring internally. Although it cannot
be confirmed with the currently available data, the sep-
aration of non-avian dinosaurs and crown-group birds in
PC morphospaces indicate a clear trend towards relative
expansion of the cerebrum along the dinosaur-bird tran-
sition (Figs. 3 and 4), which may be related to increased
stimulus processing ability [47]. A recent study suggests
that the Wulst (a visual and somatosensory integration
and processing center) and the entopallium (a visual
interpretation area) are important in fast-paced visual
processing during flight [5]. Although the landmark
scheme used here did not explicitly test for shape differ-
ences in the Wulst, the expansion of the posterodorsal
region of the cerebrum in avian evolution (Fig. 3,
Additional file 1: Figure S2), where these flight-related
nuclei lie, may correspond to an increased trend in
volant behaviors [5]. Previous studies based on pro-
portional volumes have shown that the cerebral ex-
pansion did not appear abruptly at the origin of
Avialae, but rather, occurred more gradually through-
out coelurosaurian evolutionary history [11, 12]. In-
flated, ‘avian-like’ brain volumes first appear at the
base of Maniraptora [11] and significant volumetric
expansion of the cerebrum does not occur until well
within the crown group [12]. However, the shape data
here demonstrate that the neuroanatomical shape
differences between non-avian dinosaurs and
crown-group birds are primarily driven by the cere-
brum. Collectively, these results suggest that cerebral
shape may have changed in response to the increased
use of flight behaviors between non-avian dinosaurs
and the modern radiation of birds even as propor-
tional volume remained relatively constant [12]. Intri-
guingly, LD2, that separates volant and flightless
birds, is associated with slight reduction in the con-
vexity of the cerebrum, including the Wulst, suggest-
ing that its relative expansion could reflect flight
capacity across coelurosaurs. Such investigation re-
quires explicit characterization of Wulst morphology.
Although the overall predictive power of endocranial

shape for locomotory mode is weak, the LDA based on

current sampling classifies Archaeopteryx as terrestrial,
and not volant. This is an intriguing result given the
ongoing debate about its flight capabilities [42, 43]. The
endocast of Archaeopteryx seems to more closely resem-
ble its non-avian relatives rather than crown group birds,
meaning it may not have been capable of extensive vo-
lant behaviors. Increased taxonomic sampling that fills
in the gap between Archaeopteryx and the modern radi-
ation of birds may strengthen our ability to classify the
locomotory mode of the earliest members of Aves. The
LDA classifies Eudyptes as a volant bird. Early studies
note that the penguin uses subaqueous flight for
locomoting underwater [41], and our study shows that
its neuroanatomical shape corroborates the notion that
subaqueous flight is equivalent to aerial flight. This
outcome may be due to the fact that the evolution of
wing-propelled diving (i.e. the acquisition of a new
behavior) may have played a larger role in shaping the
brain than the initial loss of aerial flight (i.e. the loss of
an established behavior) [48].
If not locomotory mode, then what are the major

drivers of brain shape evolution in birds? Previous GM
studies on avian endocasts have shown that phylogenetic
history, allometry, and orbit shape account for statisti-
cally significant (P < 0.001), but small proportions of
endocranial shape variation [17, 49]. With different taxo-
nomic sampling and use of high-dimensional shape
characterization, our results corroborate these find-
ings, indicating that there is allometric signal and a
very weak, albeit statistically significant, phylogenetic
signal present in the endocranial shape datasets.
While these factors have variably contributed to
evolutionary changes in bird brains, they collectively
account for a small proportion (~ 10%) of the total
variation [e.g., 49], suggesting that additional drivers
are yet to be identified [49].
In addition, increased taxonomic sampling is still

needed between the base of Avialae and the origin of liv-
ing birds. Unfortunately, most of the fossils from this
interval are fragmentary [50] or crushed [51] making
endocranial construction extremely difficult. This
paucity of specimens contributes to the apparent gap
between Archaeopteryx and modern birds in the
phylomorphospace, preventing a more reliable model of
neuroanatomical evolution along this lineage. Early avia-
lans undertook a variety of locomotor strategies, from
the fully volant Enantiornithines [52] to the swimming
Hesperornithiformes [53]. Sampling this region of the
tree, perhaps from recently discovered specimens [54],
might bridge the gap from the non-volant theropods and
at least partially volant Archaeopteryx to the fully volant
crown group and provide examples of transitional brain
morphologies not represented by living or extinct
theropods.
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Conclusions
The osteological changes associated with the evolution
of flight in theropod dinosaurs is well documented in
the fossil record, but the accompanying neuroanatomical
changes are less known. Here, we used 3-D GM tech-
niques on endocasts of extinct and modern dinosaurs
(birds) to quantify and evaluate neuroanatomical
changes related to this major locomotory change. In
particular, we analyzed closely-related sets of volant and
flightless birds to use as a potential reverse analogue to
the initial acquisition of flight. The results demonstrate
that loss of flight capacity does not incur predictive
changes to endocranial shape in extant birds. In
addition, the brain morphology of flightless birds do not
converge to that of non-avian dinosaurs. While add-
itional sampling may close the gap between non-avian
dinosaurs and Neornithes, brain evolution from
non-avian dinosaurs to birds appears to have been a uni-
directional phenomenon or “point of no return.” Among
crown-group birds, returning to an ancestral locomotory
mode (i.e., flightlessness) does not correlate with a rever-
sion to the more pleisiomorphic brain shape found in
terrestrial non-avian dinosaurs. Modern flightless birds,
therefore, are not reverse neuroanatomical analogues of
non-avian dinosaurs.
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