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Abstract

Background: In recent years, increasing attention has been placed on the development of phylogeny-based
statistical methodologies for uncovering site-specific changes in amino acid fitness profiles over time. The few
available random-effects approaches, modelling across-site variation in amino acid profiles as random variables drawn
from a statistical law, either lack a mechanistic codon-level formulation, or pose significant computational challenges.

Results: Here, we bring together a few existing ideas to explore a simple and fast method based on a predefined
finite mixture of amino acid profiles within a codon-level substitution model following the mutation-selection
formulation. Our study is focused on the detection of site-specific shifts in amino acid profiles over a known sub-clade
of a tree, using simulations with and without shifts over the sub-clade to study the properties of the method. Through
modifications of the values of the amino acid profiles, our simulations show different levels of reliability under
different forms of finite mixture models. Sites identified by our method in a real data set show obvious overlap with
those identified using previous methods, with some notable differences.

Conclusion: Overall, our results show that when a site-specific shift in amino acid profile is strongly pronounced,
involving two clearly different sets of profiles, the method performs very well; but shifts between profiles that share
many features are difficult to correctly identify, highlighting the challenging nature of the problem.

Keywords: Substitution models, Monte Carlo methods, Mixture models

Introduction
Detecting shifts in site-specific amino acid preferences
across species or strains poses a number of technical chal-
lenges [1]. Some early approaches relied on information-
theoretic calculations, performed on sequence alignments
directly [2–4]. These methods assume that the molecu-
lar sequence of each species or strain in an alignment
provides an independent set of observations across all
sites. Quite often, however, the sequences of an alignment
under analysis are in fact closely related to one another,
and methods that fail to account for these relations are
susceptible to numerous types of problems [5]. Indeed,
the issue of non-independence of sequences in a sample
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is what drives the field of phylogeny-based methods of
analysis [6, 7].
In keeping with this understanding, phylogenetic

approaches that account for shifts in amino acid prefer-
ences have been explored, with perhaps the most sophis-
ticated of these being the CAT-BP model [8]. Its name
is meant as a shorthand for a model which, in effect,
attempts a CATegorization across sites of amino acid pro-
files, with Break-Points along the tree that make changes
to the amino acid profiles governing each site. Realizations
of the substitution process are thus heterogeneous across
the positions of an alignment, and along the branches of
the phylogeny, with both types of heterogeneity inferred
directly from the data.While the principles of the CAT-BP
model are attractive, the time-heterogeneity of amino acid
composition is modulated globally across all sites, which
is a different perspective than one seeking to uncover
particular sites having undergone changes in amino acid
profiles. Moreover, the model is difficult to work with in
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practice, given the elaborate set of Monte Carlo operators
involved in its implementation, and more work is needed
to make the CAT-BP model tractable for larger data sets.
Roure and Phillipe [9] investigated an approach build-

ing solely on the CAT model [10], with a multi-stage
system aimed at testing specific hypotheses about the
time-heterogeneity of amino acid profiles across a few
sub-clades of a phylogenetic tree. In their approach, a first
Markov chain Monte Carlo (MCMC) run is conducted
with the CAT model on a dataset of interest. On the
basis of this MCMC, a finite set of profiles is constructed,
which is meant to be an approximation of the distribution
of amino acid profiles across sites. Using the so-defined
empirical finite mixture model, a second set of MCMC
runs is conducted, with each run taking place on a particu-
lar sub-set of taxa of the original data, in order to obtain an
estimate of the posterior probability of a frequency profile
given the data at the site. A post-treatment of this second
set of MCMC runs is performed on the basis of site alloca-
tion probabilities in each sub-set of taxa, so as to compute
the probability of identical profiles (PIP) across taxa sub-
sets for each site. A low PIP signals a potential shift in
amino acid preference across taxa sub-sets. Similar ideas
have been explored by Rey et al. [11]. However, a strictly
amino acid-level approach as used by Roure and Phillipe
[9] and Rey et al. [11] relinquishes the mechanistic for-
mulation [12] that allows for the analyses to be conducted
directly on the protein-coding DNA sequence data, in a
joint estimation of several features of the evolutionary
process.
Codon-level approaches, relying on the mutation-

selection framework [12, 13] have more recently been
applied to the modelling of changes in amino acid profiles,
either with site-specific-clade-specific maximum likeli-
hood estimation [14–16], which may sometimes run the
risk of over-parameterization [17]; with experimentally
derived profiles [18], which are only applicable for few
genes; or with hierarchical Bayesian methods such as the
differential selection profilemodel [19], which intrinsically
treat across-site variation as random-effects, and in this
case account for across-time variation over specific clades
of interest. Again, the computational challenges from the
latter approach are significant, and the richness of the dif-
ferential selection profile parameterization seems to leave
it with low power [19].
Here, we adopt a method that combines some of

the ideas proposed in Roure and Phillipe [9] with the
mutation-selection approach described in Rodrigue et al.
[20]. The method operates with a predefined finite mixture
of amino acid profiles, which are introduced into the
mutation-selection codon substitution framework [20, 21].
This modelling framework implicitly captures (non-
synonymous) rate-heterogeneity as a consequence of its
basic construction. For instance, if a codon site is allocated

to a profile dominated by a single amino acid, it will have
a very low non-synonymous rate (because a fixation fac-
tor included in the substitution matrix will approach 0
for any mutation away from the high-fitness amino acid);
whereas another codon site, allocated to a profile with
all amino acids being nearly equal in fitness would have
a comparatively high non-synonymous rate (because the
fixation factor will be close to 1 for all mutations); and
altogether, given the mixture over a range of profiles, the
model mechanistically leads to a high level of across-site
rate heterogeneity. Similarly, the mutation-selection mod-
els we study here implicitly allow for the possibility of
rate heterogeneity across lineages (or across sub-clades),
through a mechanistic rationale whereby a codon site
could shift from a profile, say, dominated by a partic-
ular amino acid (and thus with low non-synonymous
rate) to a profile that is even across the twenty states
(and thus of high non-synonymous rate). Through various
shifts over a mixture of profiles, the model can capture
a high level of rate-heterogeneity across a sub-clade of
interest. In contrast to traditional modelling approaches,
which attempt to capture rate heterogeneity phenomeno-
logically (e.g., by fitting distributions of branch length
multipliers [22, 23], through branch-site models [24, 25],
or through Markov-modulated processes across branches
[26]), mutation-selection models seek to parameterize the
underlying causes of such rate heterogeneity. In this work,
we allow different amino acid fitness profiles across sites,
and over different parts of the tree. Specifically, MCMC
is applied separately across different sub-sets of taxa from
the data, corresponding to different parts of a phyloge-
netic tree. Using simulations in a realistic set of condi-
tions, we study the identifiability, or strength of allocation,
and PIP scores to evaluate the potential of ourmethod.We
find that the method has good power, with a reasonable
false-positive rate, when the shifts in amino acid profiles
correspond to marked differences in profiles. However,
when the distinctiveness of profiles is low across the sub-
tree of interest compared to the rest of the tree, the
method can perform poorly. This is a common occurrence
in real data settings and emphasizes that this problem is
a challenging one. Our simulations illustrate one way of
studying how the method’s performance changes for dif-
ferent levels of profile distinctiveness. Analysis on real
avian- and human-host strains of Influenza shows results
consistent with previous methods, with some notable
exceptions.

Methods
Models and Monte Carlo sampling methods
The codon-level substitution model we use follows the
mutation-selection framework [12, 13, 20]. At codon site
n, the entries in the 61 × 61 matrix Q(n), specifying the
infinitesimal rate from codon i to codon j, are given as:
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Q(n)
ij = μij

S(n)
ij

1 − e−S(n)
ij

where μij controls the nucleotide-level mutational pro-
cess (μij = ρicjcϕjc , where ic corresponds to an index of
the nucleotide at position c (c = 1, 2, or 3) of codon i,
and where (ρab)1≤a,b≤4 is a set of nucleotide exchange-
abilities with the constraint

∑
1≤a<b≤4 ρab = 1, and ϕa =

(ϕa)1≤a≤4 is a set of nucleotide propensities with the con-
straint

∑4
a=1 ϕa = 1) and S(n)

ij is the (scaled) selection
coefficient associated with going from the amino acid
encoded by i to that encoded by j at site n [20]. This selec-
tion coefficient is obtained from S(n)

ij = lnψ
(zn)
f (j) − lnψ

(zn)
f (i) ,

where ψ(zn) is the mixture component (amino acid pro-
file) allocated to site n, lnψ

(zn)
f (i) is the (scaled) fitness of the

amino acid encoded by codon i at that site, f (i) returns
an index from 1 to 20 based on the amino acid encoded
by codon i, and zn is an auxiliary variable returning an
index, from 1 to K, specifying the allocation of site n to
component k (1 ≤ k ≤ K).
In this work, our finite mixture models are based on

two predetermined sets of amino acid profiles. First, we
arbitrarily defined a set of profiles (which we denote
“MutSelBC”) based loosely on a grouping of side chain
biochemical properties:

• Small nonpolar: alanine, glycine, serine, threonine
• Aromatic: phenylalanine, tryptophan, tyrosine
• Nonpolar aliphatic: isoleucine, leucine, valine,

methionine
• Polar positive: histidine, lysine, arginine
• Polar negative: aspartic acid, glutamic acid
• Polar neutral: asparagine, glutamine
• Proline
• Cysteine

This grouping into eight profiles was selected to have
no overlap in amino acid residues, so as to construct
the most biologically obvious shifts in amino acid prefer-
ences. We controlled the intensity of purifying selection
against amino acids excluded from a group by distributing
the probability mass of a profile mainly to the members
of a group as explained in the opening of the results
section.
As a second alternative, we used the C10, C20, C40,

and C60 finite mixture profiles from Quang et al. [27],
which were derived from an amino-acid-level maximum
likelihood analysis of a large set of empirical data. As
in Rodrigue et al. [20, 21], we refer to these models as
MutSelC10, MutSelC20, MutSelC40, and MutSelC60.
Our Markov chain Monte Carlo sampler performs

updates on z (z = (zn)1≤n≤N where N is the number
of codon sites), along with other parameters collectively
denoted as θ , but we focus our description on the update

mechanisms of the former, since the approaches we utilize
are seldom discussed in the contexts of phylogenetic finite
mixture models. We explore two sampling approaches.
First, assuming an initial random allocation has been set,
a Gibbs update for the allocation of a particular datum,
denoted asDn, proceeds through the following steps: first,
supposing that the datum allocation being subjected to the
update is currently set to component k, i.e., zn = k, we
decrease by 1 the count of the number of data columns
affiliated to that component, denoted ηk . Then, among the
K possible components of the mixture, we draw a new k,
and set zn = k, with probability ∝ (ηk + 1)p(Dn | θ ,ψ(k)).
The auxiliary variable approach to our sampler is a form
of demarginalization or parameter expansion [28], with
respect to approaches that operate with weighted sum
likelihood function at site n:

p(Dn | θ) =
K∑

k=1
wkp

(
Dn | θ ,ψ(k)

)
,

where w = (wk)1≤k≤K (with the constraint
∑

1≤k≤K wk =
1), is a weight vector, withwk being the prior probability of
a given site being allocated to component k. Updating as
we do implicitly integrates over the weights, and is equiv-
alent to having a flat Dirichlet on them [29]. Alternatively,
we worked with a sampler that includes the weights, and
draws a value k for site n, and sets zn = k, with a probabil-
ity ∝ wkp

(
Dn | θ ,ψ(k)). This second sampling approach

has the advantage of being paralellizable, since updating
the allocation of one site does not rest on knowledge of
the allocation states at other sites. Since both sampling
methods produced very similar results, we worked with
the paralellizable version given its greater computational
efficiency.

Probability of identical profiles
Using preset values for our mixture models, in con-
junction with our MCMC sampling methods, allows for
straightforward calculations of the probabilities of each
site of an alignment belonging to each component of
the mixture. Specifically, from a collection of draws of z
from the posterior probability distribution obtained via
MCMC, we calculate the probability of allocation of site n
to component k as simply the proportion of draws where
zn = k in our sample, which we denote as p(n)(k). Let-
ting z(m)

n be the mth draw (from a total of M) from the
posterior obtained by MCMC, the allocation probability
is computed as

p(n)(k) = 1
M

M∑

m=1
δmnk ,
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where

δmnk =
{
1, if z(m)

n = k,
0, otherwise.

The same procedure can be applied for an analysis
where the allocation of site n is (potentially) different in
two parts of the tree, in this case giving us the probability
of allocation of site n to component k in the human-host
sub-tree p(n)

hu (k), and that of the remaining avian-host part
of the tree p(n)

av (k). Doing so amounts to assuming com-
plete independence of the human sub-clade from the rest
of the tree. In other words, we make the crude assump-
tion that the branch length connecting this sub-clade is
of infinite length. In this latter context, the probability of
identical profiles [9] at site n is calculated as follows:

PIPn =
K∑

k=1
p(n)
hu (k) × p(n)

av (k).

Note that PIPn = 1 for a site with 100% probability of
allocation to the same profile across the two parts of the
tree and PIPn = 0 if the allocation is entirely to different
profiles.
The PIP can therefore be used to sort sites of interest

when seeking to uncover those which have undergone a

shift in amino acid preferences. As an arbitrary cutoff, we
study the sites having PIP from 0 to 0.05 (see below), but
a more permissive approach could use a higher PIP cutoff
value.

Real data
We used the Influenza PB2 gene alignment assembled by
Tamuri et al. [30], comprised of 321 avian-host and 80
human-host strains. The reference tree topology was also
taken from Tamuri et al. [30] and was invariant through-
out the analysis. This tree is structured such that human-
host strains are monophyletic, as sketched in Fig. 1. We
are therefore focused on detecting shifts that may have
occurred in human-host strains, following the transfer
from avian hosts.

Simulations
We simulated data using the posterior mean nucleotide-
level parameter values (closely matching those reported
in previous studies [17, 30]) and branch length val-
ues obtained when running the MutSelC60 model [20],
combined with several different amino acid profiles, as
described above. When analyzing this simulated data,
nucleotide-level parameters were re-sampled from the
posterior distribution, as were branch lengths and amino

Fig. 1 Sketch of Influenza PB2 phylogenetic tree, with monophyletic human-host clade
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acid profile allocations. The profiles themselves were kept
fixed, as was the tree topology. Some simulations con-
sisted of running the same substitution process over
the entire tree (comprising both human- and avian-host
strains), which can be viewed as the control simulations,
whereas others used different amino acid profiles in the
human-host strains sub-tree than in the remainder of the
(avian-host strains) tree.
We explored simulations under several sets of amino

acid profiles. The first set, which we denote “MutSelBC”,
is arbitrarily defined, and based loosely on side chain
biochemical properties (see above). These profiles were
selected to have no overlap in the dominant amino acid
residues, such that biologically clear preference shifts at
a given position would be represented as profile shifts
coinciding with the host transition [30].
These simulations and calculations were conducted in

a modified version of PhyloBayes-MPI 1.7 [31, 32], which

outputs allocation probabilities for MCMC runs under
finite mixture models (available here).

Results and discussion
Simulation data
Figure 2 depicts three versions of the eight MutSelBC
profiles that we used for our first series of simulations.
In these logoplots, the height of each letter in the col-
umn represents the probability mass for that amino acid
residue in the profile. These three sets of profiles show
a gradient in what we refer to as peakedness. We use
this term to refer to the probability mass that we dis-
tribute equally to the amino acids of a profile group, with
the complement being distributed equally to the remain-
ing amino acids, not part of that group. The first set of
profiles shows a 50% peakedness value (leftmost panel
of Fig. 2). Thus, in the first profile in this set, valine,
methionine, leucine and isoleucine together have a 50%

Fig. 2 Logoplots of MutSelBC profile sets with four different “peakedness” values, indicating probability mass of the chosen amino acids in each
profile. For each profile set, the probability of the profile-specific amino acid is 50%, 75%, and 90% respectively

https://github.com/omarkazmi/FiniteMutSel
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probability mass, with the other 50% equally distributed
to all other amino acids; the second profile in the set
has 50% distributed evenly to tyrosine, tryptophan, and
phenylalanine, with the 17 other amino acids splitting
the remaining 50%, and so on. The two other panels of
Fig. 2 show profiles with dominant amino acids sharing a
probability mass of 75% and 90%. The peakedness param-
eter provides a crude means of controlling the intensity
of the constraint for the amino acids of a group. Note
that the peakedness only applies when constructing pro-
files, and is not a parameter that comes into play during
inference.
The effect of the peakedness of the simulation pro-

files on the subsequent analyses can be seen in the
logoplot in Fig. 3. This figure displays the allocation

probability of a particular site, simulated with the first
profile at 90%, 75% and 50% peakedness. These simula-
tions respectively amount to what we could characterize
as a relatively strong, moderate, and weak selection con-
straint for nonpolar aliphatic residues at that site. As
the peakedness decreases, the allocation probability to
the profile used to simulate can be seen to decrease. In
other words, when the selection constraint for a partic-
ular group of amino acids is weak, so is the allocation
probability.
A precision-recall plot (Fig. 4) shows that the best PIP

threshold across different profile sets was between 0.025
and 0.075, although barely perceptible graphically. We
therefore chose 0.05 as a preliminary threshold for our
study.

Fig. 3 Allocation probability logoplots for the same codon site using MutSelBC profiles with 90% (top), 75% (middle) and 50% (bottom)
“peakedness” values. For each logoplot, the solid bar indicates the allocation probability to a given profile at that site, and the letters underneath
indicate the profile. The letters are scaled to indicate the probability of that amino acid at the site in that profile
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Fig. 4 Precision-recall plots for MutSelBC profiles with peakedness 0.75 and 0.95, and MutSelC60

Figure 5 summarizes the broader implications of profile
peakedness on the simulation results. Alignments were
simulated as before, with a peakedness ranging from 0.50
to 0.95. For each alignment, 80 of the 759 codon sites were
evolved under a different profile regime in the human-
host sub-tree than in the rest of the tree, to simulate a
distinct preference shift at those sites. The remaining sites
were evolved under the same profiles for the entire tree.

We then analyzed these alignments, evaluating the prob-
ability of identical profiles (PIP) at each site across the
human-host sub-tree and the rest of the tree.
It can be seen that the true-positive detection rate,

that is, the ability to correctly identify the sites that were
evolved with different amino acid profiles across the two
groups by having a low PIP score, increased dramatically
as a function of the peakedness of the profiles (Fig. 5,

Fig. 5 True positive left), and false positive (right) detection of preference shifts, by peakedness value, for simulated data using MutSelBC,
MutSelC10, MutSelC20, MutSelC40 and MutSelC60 profiles
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left panel). A peakedness of 0.95 identified 87.3% of the
embedded profile shifts. In other words, the approach
is effective in detecting amino acid profiles which are
markedly different in the sub-tree of interest. However,
with a peakedness of 0.5, the true-positive detection rate is
less than 20%, indicating that if the strength of constraint
on a sub-set of amino acids is not sufficiently strong, the
method will perform poorly.
False positive detection (Fig. 5, right panel), where

PIP was low despite there not being an embedded shift,
showed best performance at 0.95 peakedness (2.05%).
Again, at this level of peakedness, the profiles are fairly
rigid and there is little or no overlap of amino acids across
the set of profiles.
Simulation analyses for MutSelC10, MutSelC20, Mut-

SelC40, and MutSelC60 models showed considerably
higher false positive rates compared to the MutSelBC
models, with MutSelC10 being the lowest at 12.5% and
MutSelC60 the highest at 60.7%. True positive rates were
generally lower than with MutSelBC models, ranging
from 60.6% for MutSelC10 to 91.8% for MutSelC60. This
could be because of lower allocation probability to these
profiles in general, as compared toMutSelBC. However, in
many cases it is likely due to multiple profiles having simi-
lar amino acid compositions, while differing slightly in the
proportions.
In order to investigate the effect of varying amounts of

evolutionary signal within data, we performed another set
of simulations. We constructed a scenario that mimics a
low-information content in the alignment, and another
that mimics a high-information content; this was accom-
plished by taking the original tree used for our simula-
tions and multiplying all branch lengths by a factor of
0.1 and 10, respectively for low- and high-information
content in artificial data sets. As expected, data sets

simulated with high-information content led to a better
overall performance of the method, whereas those with
low-information content led to a poorer performance.
This can be seen in Fig. 6: in the left panel, we see that
when branch lengths are one-tenth of the original (yel-
low line), that true positive detection is markedly lower in
the same peakedness profiles; conversely, multiplying the
branch lengths by ten (green line) notably increases the
rate of true positive detection. However, even in the low-
information context, profiles with a peakedness of 0.80 or
higher perform better than chance in the detection of true
positives. False positives (right panel) are not markedly
altered by information content, remaining under 20% for
all peakedness profiles.
We conducted additional simulation studies where data

was simulated under theMutSelC60 profiles and analyzed
with the different (artificial) MutSelBC profiles, over a
range of peakedness (Fig. 7). Results were not strongly dif-
ferentiated: a shift from one MutSelC60 profile to another
often does not amount to a biophysical or functional
shift, and is thus not registered as a relevant shift by the
different MutSelBC profiles, as shown below.
Figure 8 is a demonstration of a potential false positive.

It shows an apparent preference shift in the sub-clade of
interest, whereas the simulation did not, in fact, include a
shift at that site. The allocation probability in the human-
host sub-tree is displayed in blue, and the allocation prob-
ability in the remaining avian-host strains is displayed in
red. Closer examination of the profile allocations in the
MutSelC60 case indicates that the apparent shift may be
an artifact of the ambiguity of the profiles. In the avian-
host strains, the site appears to allocate primarily to three
different profiles, but all three of these profiles show pref-
erence for small nonpolar amino acids (ASTG). In the
human-host sub-tree, the site almost entirely allocated

Fig. 6 True positive (left), and false positive (right) detection of preference shifts using MutSelBC profiles in trees with the same topology but branch
lengths altered by a factor of 0.1 (yellow), 1 (blue) and 10 (green)
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Fig. 7 True positive (left), and false positive (right) detection of preference shifts for data sets simulated with MutSelC60 profiles but analyzed with
MutSelBC profiles, by peakedness of MutSelBC profile

to a single profile, different from those of the avian-host
strains. Yet, this profile also shows preference for small
nonpolar side chains (AST). There may be little functional
difference in residues at the site, but different weighting of
the same residues in different profiles gives a false positive.
TheMutSelBC profiles at bottom, which have a single pro-
file for small nonpolar side chains (TSGA), show almost
no difference in profile allocation between the two groups.

Real data
Figure 9 shows allocation to MutSelBC profiles for sites
with high and low PIP scores. In the top panel, the avian
and human groups allocated strongly to the same pro-
files (PIP = 0.865), while the middle panel shows the case
where both clades allocated completely to different pro-
files (PIP = 0.00). The bottom panel has a relatively low
PIP score (0.115), but this is due to weak allocation to any
profile, in both groups, rather than the result of a clear
preference shift at that site.
Table 1 shows PIP scores for sites using MutSelC60 and

MutSelBCmodels. Sites that were identified in Finkelstein
et al. [3] as having undergone a shift in amino acid com-
position between human- and avian-host strains are also
listed, along with the euclidean distance of their amino
acid frequency vectors. Sites identified in Tamuri et al.
[30] as displaying a preference shift between human and
avian clades are also listed.
Tamuri et al. [30]’s methodology in measuring the mag-

nitude of the preference shifts makes it difficult to com-
pare findings, but several cases exist where the shift as
detected by Tamuri et al. [30] were to a functionally sim-
ilar profile in MutSelBC. We illustrate several examples
below.
Site 44 was allocated to alanine-dominant profiles in

the avian-host strains and serine-dominant profiles in
human-host strains, albeit with very weak allocation in

the human-host clade. Tamuri identified an alanine pref-
erence in the avian-host strains and a leucine preference in
human-host, but both had a strong secondary preference
for serine.
Site 475 allocated strongly to leucine-dominant pro-

files in the avian-host strains, and methionine-dominant
in human-host strains. Tamuri found similar results, with
avian-host strains preferring leucine with a secondary
preference for methionine, while human-host strains pre-
ferred methionine only.
Site 569 strongly allocated to threonine-dominant pro-

files in the avian-host strains, while the human-host
clade was spread between threonine, alanine, serine and
glycine-dominant profiles. Tamuri identified a preference
for threonine (secondary alanine) in avian-host strains,
and alanine (secondary serine) in human-host strains.
Site 613 showed weak allocation in both clades, with

avian-host strains favouring valine-dominant profiles and
human-host strains split between valine, methionine and
leucine. Tamuri identified a preference for valine with sec-
ondary alanine and isoleucine for avian-host strains, while
human-host strains has a preference for threonine, with
secondary isoleucine and alanine.
Site 702 strongly allocated to lysine-dominant profiles in

the avian-host strains and arginine-dominant profiles in
human-host strains. Tamuri identified a preference for as
lysine with secondary arginine in avian-host strains, and
arginine in human-host strains.
As can be seen, instances where neither MutSelC60 or

MutSelBC profiles agreed with Tamuri et al. [30] were
largely due to the biochemical similarity of the residues
involved, which caused allocation to similar or identical
profiles, or due to Tamuri et al. [30] identifying a change in
proportion of preference to the same amino acids between
groups, which was not considered a functional shift under
our finite mixture models.
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Fig. 8 Allocation probability logoplot using MutSelC60 (top) and MutSelBC (bottom) profiles, illustrating a false positive in simulated data under
MutSelC60. Red is the simulated avian-host alignment, and blue is the simulated human-host alignment, which did not have an embedded
preference shift. Purple indicates overlapping profile allocation in both clades

Conclusions and future directions
The idea behind our mixture modelling approach is this:
each codon site of the alignment is considered to have
been generated under one particular component (profile)
from the mixture. Our MCMC system allows for the cal-
culation of the posterior probabilities of a site having been
generated by each of the possible components. If a site has
an equal probability of being affiliated to one of two pro-
files in both the human-host clade and the rest of the data,
than the model is indeed saying that, given the evidence

at hand, there is a 0.5 probability that the site evolved
under the same profile in the entire data set (by chance,
there is a 0.5 probability of picking the same profile in
both sub-sets of sequences). Such cases simply reflect the
uncertainty of inference. Moreover, if a site has a nearly
equal probability of having evolved under each of theMut-
SelC60 profiles in the human-host sub-clade, and likewise
in the avian-host set, the PIP would be very low; given
the evidence at hand, the model is saying that it is quite
unlikely that the same profile acted in both sub-sets of
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Fig. 9 Allocation probability logoplots in avian (red) and human (blue) strains of Influenza PB2. Purple indicates overlapping profile allocation in
both clades. At top is a strongly identified non-shift with a PIP of 0.865. At middle is a strongly identified shift, with a PIP of 0.00. At bottom, the low
PIP of 0.115 does not indicate a preference shift, as site is weakly allocated to a number of profiles in both clades

sequences. For the purposes of our study, such latter cases
are not of direct interest. Rather, our focus is on those sites
exhibiting strong evidence of a profile shift. This amounts
to focusing on sites that have reasonably strong allocation
in both parts of the tree, but where those allocations are
different. One way to guide this focus would be to take the
entropy of the allocation probability vector of a site into
account. This entropy quantifies the strength of the con-
straint at that site, and the phylogenetic signal available in
the sequence alignment.
Overall, we can see that finite mixture models are

capable of detecting preference shifts in simulated viral
sequence alignments, especially where the profile shifts
are highly pronounced. This is the case for MutSelBC
profiles with a high peakedness value: inferences become
progressively less powerful as shifts become less promi-
nent. However, these profiles are arbitrarily defined and
relatively crude, with equal probability mass given to all
residues in a profile.
MutSelC60 profiles, which are more objectively con-

structed from empirical data, show a middle ground in
effectiveness of preference shift detection. However, one
drawback of using this mixture model is the allocation of
sites to similar profiles, registering as a profile shift and
resulting in false positives, as detailed in the discussion for
Table 1 above. This raises the question of whether profile

shifts between biologically similar residues truly represent
adaptive shifts. After all, empirical amino acid matrices,
such as LG [e.g., 33], are based on the rationale that some
pairs of amino acids are highly exchangeable, and may
be nearly equivalent in fitness. Alternatively, it may be
that statistically significant shifts may have low biological
significance.
The MutSelBC model is blind to these types of shifts.

For example, A199S is detected as a host shift marker by
MutSelC60, Finklestein et al. [3] and Tamuri et al. [30],
but is contained in the same profile and considered strictly
equivalent by MutSelBC.
Important improvements could be realized by using

empirical profiles constructed within the codonmutation-
selection context, rather than MutSelC60 profiles, which
were originally derived in an amino-acid replacement con-
text. We could extend this further by defining empirical
codon profiles so as to detect shifts in codon usage [34].
For example, the original MutSelC60 profiles could be
mapped onto three sets of 61-element codon profiles:
one with the bulk of the probability mass on high-usage
codons, one with emphasis on low-usage codons, and
one with equal weighting on all degenerate codons. This
would allow us to simultaneously investigate site-specific
heterogeneity in both amino acid preference and codon
usage bias.
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Table 1 Codon sites with preference shifts detected with MutSelC60 and MutSelBC profiles, and sites identified in previous studies ([3]
and [30])

Site PIP (MutSelC60) PIP (MutSelBC) Finkelstein Tamuri Avian Human

44 0.0582 0.2155 0.966 YES A((S)) S((L))((A))

64 0.148 0.0170 0.954 M(I)((T)) T((M))((I))

76 0.00346 0 T((M))((K))((I))((A)) T

81 0.0165 0 T((I))((A)) M(V)((T))((I))

102 0.166 0.0000160 N((S))((K)) N

105 0.00535 0 YES T((A)) V(M)((T))((L))((I))

106 0.0184 1 T((A)) T(A)

107 0.0116 0.00637 S((N))((G)) S(N)

109 0.272 0.0005 V((I)) V(I)

122 0.0708 0.00608 V((M))((I))((A)) V((I))((F))

199 0.0278 1 0.997 YES A* S

249 0.445 0 E* E

271 0.0154 0.974 0.958 T((I))((A)) A((T))

292 0.0127 0.0265 I(V)((T))((M)) T((I))

338 0.0124 0 V((I))((A)) V(I)

377 0.00150 0.0655 A* A((V))((T))((E))

471 0.00383 0.0845 T((I))((A)) T((P))((I))((A))

475 0.69 1 0.994 YES L* M

493 0.00257 0.91 YES R* R((K))((G))

522 0.0516 0.008 Q* Q((H))

524 0.168 0.00547 T((M))((I)) T((I))

559 0.00799 0.26 T((M))((I))((A)) T(A)((S))((N))((I))

567 0.0852 0.216 0.977 D((N))((E)) N((D))

569 0.175 1 YES T* T(A)((S))

588 0.00283 0.00609 0.971 A((V))((T)) I((V))((A))

591 0.265 0.001 Q((L)) Q

613 0.0776 0.115 YES V((A)) T((V))((I))((A))

627 0.0111 0 0.977 YES E((K)) K((R))

661 0.00126 0.967 YES A((V))((T)) T((V))((A))

674 0.00644 0.0555 0.969 A((S)) T((P))((I))((A))

676 0.0165 0.242 T((I))((A)) I(T)

682 0.372 0 YES G* G(S)((N))

684 0.0596 0.999 YES A((T)) S(A)

702 0.552 1 0.955 YES K((R)) R((K))

711 0.17 0 N((S)) N

715 0.0916 0.00584 N((S)) N((T))

740 0.00239 0 YES D* D((N))

754 0.0125 0.0335 I* I((S))((F))

Sites with a preference shift, defined as a PIP below the detection threshold of 0.05, are in bold. Amino acids have no parentheses if their frequencies are greater than 0.5, one
set of parentheses if between 0.1 and 0.5, and two sets if between 0.01 and 0.1. An asterisk on a single amino acid indicates that other amino acids are present at a frequency
of less than 0.01

We could also investigate a model which modulates
the efficacy of selection across different parts of the
tree. In the mutation-selection framework, this can be

accomplished by introducing a parameter correspond-
ing to an effective population size [35]. In fact, such a
modelling approach, modulating the role of selection in
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the substitution process, amounts to a simpler objec-
tive than seeking to uncover bona-fide changes in amino
acid preferences, but could more compactly capture time-
heterogeneity in amino acid composition.
Finally, another modelling direction could aim to rec-

ognize the possibility that a site could be allocated to
the same profile in different sub-trees, say one dom-
inated by I, L, M and V, while having very different
overall "flux" across the high-fitness amino acids. The
underlying ideas for such models have been preliminar-
ily explored by Rodrigue & Lartillot [36], in an approach
that modulates overall non-synonymous rates multiplica-

tively with both S(n)
ij /

(

1 − e−S(n)
ij

)

and ω∗, in order to

detect genes in which the non-synonymous rates are
higher than expected under the nearly-neutral mutation-
selection modelling formulation. Bloom [37] has also
explored this modelling strategy in a site-specific fashion.
By extending the approach to accommodate different ω∗
values across sub-trees, one could detect variation in the
non-synonymous flux even when the underlying amino
acid fitness profile is the same in both sub-trees. If this
modelling extension could then be combined with the
ideas in the present study, one could hope to jointly detect
shifts in non-synonymous flux and shifts in amino acid
fitness profiles.
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