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Abstract

Background: Distichodus is a clade of tropical freshwater fishes currently comprising 25 named species distributed
continent-wide throughout the Nilo-Sudan and most Sub-Saharan drainages. This study investigates the
phylogenetic relationships, timing of diversification, and biogeographic history of the genus from a taxonomically
comprehensive mutilocus dataset analyzed using Maximum Likelihood and Bayesian methods of phylogenetic
inference, coalescence-based species-tree estimation, divergence time estimation, and inference of geographic
range evolution.

Results: Analyses of comparative DNA sequence data in a phylogenetic context reveal the existence of two major
clades of similar species-level diversity and provide support for the monophyletic status of most sampled species.
Biogeographic reconstruction on a time-scaled phylogeny suggest that the origins of the genus date back to the
late Oligocene and that current geographic distributions are the result of a Congo Basin origin followed by
dispersal and range expansion into adjacent ichthyofaunal provinces at different times during the evolutionary
history of the group.

Conclusions: We present the most comprehensive phylogenetic, chronological, and biogeographic treatment yet
conducted for the genus. The few instances of species paraphyly (D. teugelsi, D. fasciolatus) revealed by the
resulting phylogenies are likely a consequence of post-divergence introgressive hybridization and/or incomplete
lineage sorting due to recent speciation. Historical biogeographic findings are both in agreement and conflict with
previous studies of other continent-wide African freshwater fish genera, suggesting a complex scenario for the
assemblage of Africa’s continental ichthyofaunal communities.
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Background

Distichodus, the type genus of the endemic African
characiform family Distichodontidae, is a morpho-
logically distinctive and moderately speciose lineage of
endemic African freshwater fishes. Distichodus species
are distributed across the continent, occurring
throughout the freshwaters of most of sub-Saharan
Africa and the river basins of the Nilo-Sudan, with
representation in six of the nine ichthyofaunal prov-
inces of continental Africa (Fig. 1). Although general
aspects of the biology of the genus are poorly docu-
mented, a few studies indicate that most species are
typically diurnally active and found primarily in lentic
habitats shoaling in and around grasses along vege-
tated river banks and swamps [4]. Most species are
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primarily herbivorous, feeding almost entirely on per-
iphyton, macrophytes, and detritus [5-7] [pers. obs.],
although some, such as D. [usosso, have been charac-
terized as dietary generalists feeding on a range of
both plant and animal materials [6]. Besides playing an
important role as a major constituent of the ecologic-
ally important herbivore/detrivore guilds in African
freshwaters [8], Distichodus is also of considerable
socio-economic importance, as many species consti-
tute a highly valued, but increasingly over-exploited,
component of artisanal and commercial fisheries
across the continent [9], and due to their high fecund-
ity and herbivorous diet are increasingly being cul-
tured in fish farms and lentic water bodies,
particularly in western Africa [4].

Fig. 1 Geographic distribution and variation in external morphology of Distichodus species diversity. Map of Africa divided into ichthyofaunal
provinces (originally defined by Roberts [1], modified by Lévéque [2], and redrawn according to new hydrological basin mapping published by
FAO [3]): Congo Basin (CB), East Africa (EA), Nilo-Sudan (NS), Lower Guinea (LG), South Africa (SA), and West Africa (WA). Shaded area represents
Distichodus extent of occurrence. Inset bar charts indicate number of Distichodus species present in each ichthyofaunal province: endemic (red)
and total (blue) (when more than endemics). Inset frame fish photographs illustrate the extent of variation in body shape, size, and coloration in
Distichodus species (from top to bottom: D. hypostomatus, D. sexfasciatus, D. lussoso, D. antonii, D. affinis, D. shenga, D. decemmaculatus)




Arroyave et al. BVIC Evolutionary Biology (2020) 20:48

Currently, the genus contains 25 valid species [10-12],
most of which are found in the Congo River basin with
species diversity decreasing with distance from that cen-
tral African center of diversity (Fig. 1). Although no
morphological synapomorphies have yet been identified
for Distichodus, the genus can be distinguished from all
other distichodontid genera by the combination of: an
upper jaw only slightly mobile with respect to the cra-
nium; an edentulous maxilla not tightly applied poster-
jorly to the premaxilla; two rows (generally) of gracile,
long stalked, bicuspid teeth in each jaw; a highly mobile
joint between the angulo-articular and dentary (i.e., a
Distichodus-type lower jaw [13]); a reduced dentary por-
tion of the mandibular sensory canal; and a completely
pored lateral line [13, 14].

Morphological variation within the genus includes
notable differences in overall body size, spanning two or-
ders of magnitude and ranging from over ~1m in the
largest species (D. nefasch, D. langi) to ~5cm in the
smallest (D. decemmaculatus, D. teugelsi), lateral line
scale counts (large- vs. small-scaled), the position of the
mouth (terminal vs. inferior), coloration (including pres-
ence and number of dark vertical bands and spots),
tooth number in the oral jaws, and fin ray counts,
among others [14-16] (Fig. 1).

The genus Distichodus was erected in the mid-
nineteenth century [17] and much of the currently rec-
ognized taxonomic diversity had been described by the
early twentieth century. As is typical of the taxonomic
literature prior to the mid-twentieth century, these older
descriptions are highly abbreviated, usually lacking ana-
tomical or ecological detail, and often based on examin-
ation of little or no comparative material. In one of the
earliest attempts at providing a classification scheme for
Distichodus, Boulenger [15] divided the genus in two
major groups based on the number of lateral line scales.
Boulenger’s classification scheme and the monophyletic
status of the genus, however, were not tested until the
cladistic study of Vari [13], in which the phylogenetic re-
lationships of the Distichodontidae were investigated
using comparative anatomical data. Although only five
species of Distichodus were included in his study, Vari’s
findings failed to support the hypothesis of Distichodus
monophyly, resolving some species more closely related
to a clade formed by the diminutive distichodontid gen-
era Nannocharax and Hemigrammocharax.

Contrary to Vari’s work [13], the first molecular phylo-
genetic study focused on the Distichodontidae [18]
found strong support for the monophyly of Distichodus,
and while this study did not focus on the genus and
sampling of Distichodus species was not exhaustive, it
provided the first picture of Distichodus relationships.
Despite this recent contribution to understanding of dis-
tichodontid relationships, taxonomic problems within
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Distichodus persist, and ongoing morphometric and
morphological studies (Vreven, pers. comm.) indicate
that considerable cryptic diversity remains unrecognized
by current taxonomy [14, 16, 19]. Because the taxonomy
of Distichodus has only been incidentally examined since
the work of Boulenger [12, 13, 16, 18, 20], a comprehen-
sive and focused phylogenetic treatment of the genus
(including sampling of multiple individuals per species
from a broad geographic range) is needed to test the
current classification and to lay essential foundations for
future investigations of this socio-economically import-
ant genus.

Therefore, to advance our understanding of the sys-
tematics and evolutionary history of Distichodus, in
addition to providing insights into the processes generat-
ing fish diversity in freshwater environments of contin-
ental Africa, this study investigates the phylogenetic,
biogeographic, and chronological framework for the di-
versification of the genus based on multi-locus compara-
tive DNA sequence data. The study provides a robust
phylogenetic framework for testing the adequacy of the
current Distichodus taxonomy, informing future revi-
sionary studies and conservation actions, as well as ad-
dressing an array of questions about the evolutionary
history of the genus. Furthermore, given its pan-African
distribution, knowledge on the temporal and geographic
context for the diversification of Distichodus holds con-
siderable promise for shedding light on the very poorly
understood biogeographic history of the continent’s
riverine networks.

Results

Sequence data summary statistics, partitioning scheme
and substitution models

The concatenated alignment of eight genes consisted of
6824 sites, of which 1581 were variable and 1339
parsimony-informative. The few instances of failed DNA
amplification and/or sequencing resulted in <2% of
missing data. The best partitioning scheme according to
the PartitionFinder analysis comprise four partitions: 1)
the entire mtDNA control region (cr), 2) 3rd codon po-
sitions of the protein-coding mitochondrial genes [col,
cyth, and nd), 3) 1st and 2nd codon positions of the nu-
clear genes [encl, glyt, myh6, shx3px3] plus 2nd codon
positions of the mitochondrial protein-coding genes, and
4) 3rd codon positions of nuclear genes plus 1st codon
positions of mitochondrial protein-coding genes. The
best-fit substitution models for these partitions were
HKY +G+X, TIN+G+ X, TIN+1+ X, and TrNef+I +
G, respectively. Models that include +X are those in
which base frequencies are estimated using maximum
likelihood rather than using the empirical frequency
distributions.
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For the BEAST2 analyses, all model parameter ESS values
were greater than 200 and effective topological approximate
ESS was always > 570. All best-fit codon models for individ-
ual gene trees input to ASTRAL-III were Muse and Gaut’s
[21] (MG94) + MO + F3x4 codon frequency models, with
the exception of myh6, for which an MG94 + M3 + F3x4
model was inferred. Terminology for the number of omega
(w) classes follows Yang et al. [22].

Distichodus phylogeny

The phylogeny derived from ML analysis (RAXML tree) of
the concatenated alignment of all eight markers is pre-
sented in Fig. 2. A summarized version of this phylogeny,
highlighting interspecific relationships, is illustrated in
Fig. 3. Single-locus phylogenies (enc1, glyt, myh6, sh3px3,
mtDNA) are presented in Figs. S1, S2, S3, S4 and S5, re-
spectively. As expected, partially because of variation in
substitution rates, single-locus phylogenies differed in the
level of resolution and nodal support, with ncDNA
markers resulting in less resolved and supported phyloge-
nies when compared to the mtDNA locus.

Species-tree analyses (SVDquartets and ASTRAL-III)
results are presented in Figs. 4 and 5, respectively.
BEAST?2 analyses yielded very similar topologies (Figs. 6
and S6, S7, S8, S9, S10, S11, S12, S13, S14, S15, S16,
S17, S18 and S19), only differing slightly in resolution
within one of the two main clades discovered. The
RAxML, SVDquartets, and BEAST2 phylogenies exhibit
largely congruent topologies with comparable nodal sup-
port, resolving the genus into two strongly supported
major clades of roughly equivalent species diversity and
with the same limits and composition (clades A and B in
Figs. 2, 3, 4, 6, and S6, S7, S8, S9, S10, S11, S12, S13,
S14, S15, S16, S17, S18 and S19). While these three dif-
ferent analytical methods revealed the same general pat-
tern of relationships in clade A, with disagreement
inside clade B (notably among D. engycephalus, D.
kasaiensis, D. lusosso, and D. atroventralis), the ASTR
AL-III analysis produced a considerably different top-
ology (Fig. 5). The source of this disagreement with the
other methods is unclear.

Regardless of inference method, and conforming to ex-
pectation, nodal support was greater at deeper diver-
gences, while weaker (BS<75; PP<0.75) at nodes
corresponding to more recent divergences, likely reflect-
ing intraspecific population-level structuring (when sam-
pling multiple individuals per species). Nonetheless, for
the most part, interspecific relationships are well sup-
ported, with the exception of a subclade of clade B.

Monophyly of Distichodus species

Sampling of multiple individuals per species allowed
testing of the monophyletic status of most morphologic-
ally diagnosed Distichodus species, and the resulting
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total evidence phylogeny (Figs. 2 and 3) strongly sup-
ports the monophyly of most of the species for which
multiple individuals were sampled. However, there are
two notable exceptions: the species pairs D. teugelsi / D.
decemmaculatus, and D. fasciolatus / D. schenga, each of
whose members were resolved as paraphyletic with re-
spect to the other. Specifically, the phylogenetic place-
ment of all sampled individuals of morphologically
determined D. teugelsi renders D. decemmaculatus para-
phyletic, and similarly, the phylogenetic placement of
the two sampled individuals of D. schenga renders D.
fasciolatus paraphyletic (Fig. 2). Although based on con-
siderably fewer comparative data, the mtDNA phylogeny
agreed, for the most part, with the concatenated phyl-
ogeny in the monophyly of most sampled species. Most
ncDNA single-locus phylogenies, on the contrary, exhib-
ited lower degrees of resolution and support than the
total evidence and mtDNA trees, failing to support the
monophyletic status of several of the species evaluated.

Timescale of Distichodus diversification

The resultant chronograms from the BEAST2 analyses
are presented in Figs. 6 and S6, S7, S8, S9, S10, S11, S12,
S13, S14, S15, S16, S17, S18 and S19, and a summary of
the results including age estimates and associated HPD
intervals of select nodes in Table 1. A number of find-
ings are apparent regardless of calibration strategy, and
therefore, of absolute times of divergence. Notable
among these are that Distichodus (crown group) origi-
nated shortly after its divergence from Paradistichodus,
and that the two major components of the Distichodus
radiation (clades A and B) started diversifying roughly
concurrently. However, despite this initial chronological
correspondence, a large subclade of clade B consisting of
seven species (the MRCA of D. kasaiensis and D. atro-
ventralis and all of its descendants) is, for the most part,
of comparatively more recent origin.

Of the main variables defining calibration strategy (i.e.,
calibration node and Pos SMB), selection of calibration
node appears to have the strongest effect on estimates of
divergence times, with node D, + D, resulting in the
oldest node age estimates (substantially older than those
based on any of the other calibration nodes used), irre-
spective of Pgs SMBs. However, node age estimates
based on calibration node P + D did not differ consider-
ably from those based on calibration node D, especially
under equivalent Pgs SMBs. This trend can be explained
by the fact that the age difference between these nodes
is relatively small, as previously mentioned. Unsurpris-
ingly, older Pgs SMBs resulted in older node age esti-
mates, although perhaps not as much as anticipated.

According to the results of analysis 8 (Fig. 6), under
what could be considered a “midway” calibration strat-
egy, intermediate in terms of calibration node (D, crown)
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and Pys SMB (30 Ma), the origins of the Distichodus
crown group date to the late Oligocene (24.1 Ma;
95% HPD =19.44-30.20). Conforming to expectation,
this estimate is older (~7 Ma) than the only previ-
ously published estimate, inferred in the context of a
time-scaled phylogeny of the Distichodontidae (17.22
Ma; 95% HPD =12-23) [18]. The results from ana-
lysis 8 also indicate that by the late Miocene/early
Pliocene (~5Ma) the bulk of species diversity in the
genus was already present. Furthermore, this chrono-
gram implies that stem lineages leading to the mod-
ern species D. hypostomatus, D. maculatus, D.
engycephalus appeared around 21-18 Ma, while most
remaining modern diversity likely originated during
the late Miocene. Notably, the most recent diver-
gences (~1Ma) correspond to the seemingly para-
phyletic species pairs fasciolatus/shenga and teugelsi/
decemmaculatus mentioned above, an observation
that supports the notion that each of these pairs
may correspond to lineages at the early stages of dif-
ferentiation and speciation.

Geographic range evolution on the Distichodus

phylogeny

Model comparison using AIC and AIC weights
(Table 2) indicate support for the M1 model (CB-as-
source) over the M2 model (CB-as-sink), while the
unconstrained (MO0) model received negligible support,
regardless of absolute times of divergence (input
chronogram). Likewise, the pattern of range shifts out
of and expansions from the Congo Basin (the ances-
tral area) implied by the preferred model (M1) was
equivalent across analyses, irrespective of absolute
node ages and despite minor topological differences
between input chronograms (particularly with respect
to the relative placement of D. engycephalus). Specif-
ically, the M1 model inferred six range shifts for Dis-
tichodus out of the Congo Basin (the ancestral area)
and three different range expansions from the Congo
Basin to include adjacent ichthyofaunal provinces
(Figs. 7, S20, and S21). Support/signal for model M1,
however, appears to be stronger when based on older
times of divergence (Table 2).
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Discussion

Distichodus relationships and taxonomic implications
Here we present the first comprehensive phylogenetic,
temporal, and biogeographic framework for examination
of the current taxonomy and evolutionary history of Dis-
tichodus and for future evolutionary studies of the genus.
Regardless of analytical method (except for ASTRAL-III,
but see below), our results, based on a dataset with con-
siderably more inclusive taxon, character, and geo-
graphic sampling for Distichodus than previous works,
strongly support the existence of two roughly equal-
sized, and reciprocally monophyletic lineages within the
genus, while corroborating the monophyletic status of
most currently recognized species. RAXML, SVDquar-
tets, and BEAST?2 topologies are largely congruent, with
some swapping of taxa inside the two-clade Distichodus
structure that is also supported by morphology [13].
Only the ASTRAL-III analysis did not conform to this
general picture of Distichodus relationships, but there
are two confounding issues then at play. First, ASTRAL-
III may be sensitive to gene tree estimation error. The

codon model approach to gene tree inference used here
should, in principle, be the most accurate method for
gene tree inference (of those currently available revers-
ible Markov models), given its hierarchical modeling
structure [23]. However, it is still not immune to the re-
quirements of large amounts of data [24]. Some close-
to-zero-length branches in the individual gene trees may
either be (1) a true artifact of ILS, or (2) a consequence
of insufficient data (in terms of gene length, or in terms
of evolutionary rate distribution). However, distinguish-
ing differences between real ILS and insufficient data is
not possible from the current analysis. We therefore fo-
cused our attention and present our conclusions based
on the results with the largest overall congruence.
Conforming to expectation, nodal support tends to be
higher at more basal nodes (deeper divergences), whereas
more recent divergences are, on average, less strongly sup-
ported. Low nodal support and instances of conflict be-
tween analytical methods of phylogenetic inference are
particularly evident for the clade consisting of the pre-
dominantly large-bodied species (D. atroventralis, D.
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Fig. 6 A time-scaled phylogeny of Distichodus. Chronogram resulting from BEAST2 analysis 8, intermediate in terms of calibration node (D, crown) and
Pos SMB (30 Ma). Divergence-time estimates are represented by the mean ages of clades. Light red bars correspond to 95% highest posterior density
(HPD) intervals of mean node ages. Calibration (fossil-based) node indicated by a dagger (1). Colored circles on nodes indicate degree of clade support
as determined by posterior probabilities: black > 0.95, 0.95 2 blue 20.75, red < 0.75. Outgroup taxon (Nannocharax ansorgii) not shown

10 5

0

Paradistichodus dimidiatus AMNH 257747
hypostomatus CU 95143
maculatus AMNH 252806
noboli AMNH 257170

teugelsi MRAC A731P348
decemmaculatus AMNH 247931
notospilus CU 95853

kolleri AMNH 249814

altus AMNH 269875

affinis AMNH 263347
engycephalus AMNH 257169

sexfasciatus AMNH 240874
antonii AMNH 255413
atroventralis AMNH 263670
lusosso AMINH 256953
schenga SAIAB 97189
fasciolatus AMNH 240040

Table 1 Results from alternative BEAST2 analyses. Estimated mean ages (in Ma) and associated 95% HPD intervals of select nodes:
D+ P =MRCA of Distichodus & Paradistichodus; D = MRCA of Distichodus species; Dpe + Dyo = MRCA of D. nefasch & D. rostratus; Da =
Distichodus subclade A; Dg = Distichodus subclade B. Pos SMB = 95th percentile soft maximum bound (in Ma), as a proxy for the
maximum node age constraint

Analysis  Calibration node, Pgs SMB D +P D Da Dg Dne + Dro

1 D+ P (stem), 20 1242 [8.71, 16.55] 11.21 [7.92, 15.14] 9.82 [6.80, 13.26] 9.14 [6.24, 12.53] 347 [1.98, 5.24]

2 D +P (stem), 3 15.38 [9.76, 21.86] 13.76 [8.67, 19.65] 1201 [748,17.21] 1122 [694,1622] 437 [235,681]

3 D +P (stem), 4 1944 [1141, 29.34] 1747 [10.31, 26.48] 15.30 [8.87, 23.25] 14.23 [8.16, 21.66] 541 1[261,878]

4 D+ P (crown), 2 19.03 [18.24, 20.15] 17.29 [14.75, 19.51] 1516 [12.64, 1763] 1413 [11.58,16.77]  5.38 [3.44, 747]

5 D +P (crown), 3 2401 [1943,30.15]  21.53 [15.95, 28.01] 1881 [13.84,24.81] 1760 [1255,2330]  6.89 [4.04, 10.10]

6 D +P (crown), 4 2895 [20.81, 39.58] 26.09 [17.75, 36.45] 22.89[15.19,32.04] 21,32 [14.00, 30.08]  8.10 [440, 12.38]

7 D (crown), 20 21.50 [18.54, 25.08] 19.01 [18.23, 20.07] 16.61 [14.56, 1839] 1554 [13.26, 17.65]  6.09 [3.98, 8.30]

8 D (crown), 30 27.12[20.64,35.18]  24.10 [19.44, 30.20] 21151639, 27141 19.69 [14.84, 2569] 749 [4.46, 10.82]

9 D (crown), 40 32.08 [22.31, 44.49] 28.60 [20.79, 38.73] 2509 [17.90,3480] 2334 [16.12,3241] 883 [4.75, 13.34]
10 Dre + Dy (stem), 20 41.39 [30.72, 52.63] 36.97 [28.92, 46.28] 3244 [24.74,41.13] 3008 [23.66, 37.06]  11.32 [8.03, 14.69]
1 Dne + Dy, (stem), 3 50.21 [34.81,67.85]  44.86 [31.82, 59.25] 39.28 [2743,5269] 3653 [2667,48.17]  13.88 [8.93, 19.16]
12 Dhe + Dyo (stem), 4 57.55 [37.68, 80.13] 5146 [34.88, 70.56] 45.09 [29.98, 62.81] 4198 [28.82,57.31] 1590 [9.53, 22.72]
13 Dpe + Dy (crown), 2 66.14 [43.85, 90.50] 59.09 [40.85, 79.59] 51.71[3459,69.69] 4832 [34.01,6526] 1896 [18.24, 19.94]
14 Dne + Dy, (crown), 3 7823 [50.07, 109.73]  69.92 [45.95,96.62]  61.16 [39.54, 85.63]  57.24 [38.17,79.02]  22.85 [19.30, 27.43]
15 Dpe + Dy (crown), 40 8768 [53.18,125.70] 7853 [49.63, 111.69]  68.74 [43.03,99.17]  64.28 [40.60, 91.16]  25.88 [20.21, 32.85]
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Table 2 Results from DEC* analysis of geographic range evolution on the Distichodus phylogeny. Results are presented for each of
the three analyses based on different BEAST2 input chronograms (derived from analyses 5, 8, and 14). Comparison of alternative
models (biogeographic hypotheses) and their support as assessed via Akaike weights. MO (unconstrained, dispersal to and from the
Congo Basin); M1 (allowing only dispersal out of the Congo Basin); M2 (allowing only dispersal into the Congo Basin); dispersal (d);
extinction (e); number of parameters (k); Akaike information criterion (AIC); Akaike Weights (AW)

Input Hypotheses InL Parameter estimates AIC analysis

chronogram (constraints) K d e AIC AW

Analysis 5 MO -52.01724 2 0.01911367 0.10630582 108.03450 0.08844
M1 —-49.86777 2 0.02413022 0.10000542 103.73550 0.75880
M2 —5147061 2 0.01772728 0.02239203 106.94120 0.15277

Analysis 8 MO -52.19156 2 0.01734394 0.0977318 108.38310 0.08778
M1 —-49.87853 2 0.02169815 0.09103859 103.75710 0.88703
M2 —53.44013 2 0.01639595 0.02140229 110.88030 0.02519

Analysis 14 MO —52.17641 2 0.006007077 0.033905864 108.35280 0.08558
M1 —49.83422 2 0.007466523 0.03069 103.66840 0.89043
M2 —53.44833 2 0.005663481 0.007312191 110.89670 0.02399

Il D. engycephalus (AMNH 257169)

‘ il D. petersii (cu 93783)
m B D. rostratus (AMNH uncat.)
{1 D. nefasch (AMNH 264420)
~ D. kasaiensis (AMNH 251295)
|—|:| D. lusoSSo (AMNH 256953)

l" — D. schenga (sains 97189)
="
&2 ‘
. fasciolatus (AMNH 240040)

D \ |'7" —D
- l—[l D. atroventralis (AMNH 263670)

|_ —— 1 D. sexfasciatus (AMNH 240874)
[ D. antonii (\MNH 255413)

I D. hypostomatus (Cu 95143)

4

{1 D. maculatus (AMNH 252806)

T {1 D. noboli (AMNH 257170)
4 v —] D.teugelsi (MRAC A731P348)
':D D. decemmaculatus (AMNH 247931)
D 4 Il D. notospilus (cu 95853)
L [ D. kolleri (AMNH 249814)
w

—— {1 D. altus (AMNH 269875)
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— 11 D. affinis (AMNH 263347)

I Paradistichodus dimidiatus (AMNH 257747)
| Oligocene | Miocene [ Pliocene [auatemany]

| | | |
20 10 0 Time [Ma]
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- |CB’LG| | Z | |°B’LG’Z| - - Ichthyoprovince(s)

Fig. 7 A spatiotemporal reconstruction of Distichodus range evolution. Based on the optimal DEC* model (M1; CB-as-source) and input
chronogram resultant from BEAST2 analysis 8 (Fig. 7). Ichthyofaunal provinces color-coded and abbreviated as in Fig. 1. Probabilities of ancestral
areas at each node are presented in Table S1
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lusosso, D. kasaiensis, D. antonii, and D. sexfasciatus), sug-
gesting that additional data will be necessary to resolve in-
terspecific relationships for this particular section of the
tree. Disagreement between methods in this part of the
Distichodus tree is an aspect worth revisiting in the future
with genome-wide NGS-generated data, as larger amounts
of DNA sequence data might be capable of better resolv-
ing and supporting these divergences. Besides the obvious
reasons for wanting to unambiguously resolve this part of
the Distichodus tree, such an endeavor is of special inter-
est because the highly disparate trophic-related morpholo-
gies displayed by members of this clade are undoubtedly
an interesting character system from both evolutionary
ecological and functional morphological perspectives.

Despite some of the disagreements between inference
methods, our results offer a general working hypothesis of
Distichodus relationships and, with few exceptions, are
consistent with the current species-level morphology-
based taxonomy of the group. Instances of questionable
species monophyly and therefore in conflict with the
current classification are discussed below.

Paraphyly of D. teugelsi with respect to D. decemmaculatus
Problems with the species recognition of the two dwarf
species, D. decemmaculatus and D. teugelsi, have been
noted by Verheyen et al. [19], and are confirmed here.
Species identification has previously been based on the
presence (decemmaculatus) or absence (teugelsi) of a
series of dark spots or bars along the flanks, and 20
(decemmaculatus) versus 16 (teugelsi) scales around the
caudal peduncle [11]. While our study finds strong sup-
port for a teugelsi/decemmaculatus clade, samples tenta-
tively identified as D. teugelsi from the Kwilu River in
the Kasai basin (with 16—17 scales around the caudal
peduncle and variously marked spots or bars along the
flanks), form a well-supported sister clade to the
remaining samples. While samples of D. teugelsi from
the type locality, the Lefini River, a right bank tributary
of the Congo River upstream of Pool Malebo (lacking
spots or bars on the flanks and with 16 scales around
the caudal peduncle), form a clade sister to the D.
decemmaculatus samples, all tentatively identified here
as D. decemmaculatus or D. cf. decemmaculatus. Among
these we record caudal peduncle scales counts ranging
from 18 to 20, and flank pigmentation ranging from vir-
tually absent to clearly marked and strongly spotted.
While no taxonomic solution is proposed here, based on
the molecular analysis presented and the observation of
high variability in both pigmentation and scale counts in
geographically disparate samples of both “species”, fur-
ther study of the teugelsi/decemmaculatus clade, includ-
ing representatives of populations across the range of
each putative taxon, is needed. We note further that, as
for the fasciolatus/shenga species pair discussed below,
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our estimation of the divergence time for the teugelsi/
decemmaculatus pair (based on analysis 8; Fig. 6) is
among the most recent (~ 1 Ma). The fact that this is a
very recent divergence, might explain the resulting para-
phyletic pattern. It is well known that genetic variation
shared between closely related species can be due to re-
tention of ancestral genetic polymorphisms resulting
from incomplete lineage sorting (ILS) [25], a process
that can confound phylogenetic inference and hinder ro-
bust tests of monophyly in recently diverged species
pairs. Whereas mtDNA introgressive hybridization has
been also recognized as one cause of misleading infer-
ences of paraphyly, the overall congruence between the
nc- and mtDNA signal involving the teugelsi/decemma-
culatus pair supports ILS instead of introgression as a
probable explanation for the observed pattern of para-

phyly [26].

Paraphyly of D. fasciolatus with respect to D. schenga
Representatives of the widespread species D. fasciolatus
are rendered paraphyletic by the placement of the two
sampled individuals of the southern African species, D.
schenga, a middle and lower Zambezi endemic, which
are placed well nested within a strongly supported D.
fasciolatus clade (Fig. 2). Distichodus schenga (type local-
ity Tete, Zambesi River) was described by Peters in 1852
and D. fasciolatus by Boulenger in 1898 (type localities
in the lower Congo River region), and the descriptions
of both are minimal, not allowing for morphological spe-
cies discrimination. Possibly because of this, Boulenger
[15] did not include D. schenga in his key to Distichodus,
and by implication did not recognize it as distinct from
D. fasciolatus. Our molecular data clearly suggest that
the synonomy of D. fasciolatus with D. schenga is in
order, however ongoing morphometric and morpho-
logical study of the entire “fasciolatus-complex” is cur-
rently underway (Vreven, pers. comm.), and pending the
results of that study we defer proposing a formal taxo-
nomic synonomy based solely on our molecular data
and minimal sampling of putative D. schenga from
across the Zambezi basin.

We do note however, that the phylogenetic and
chronological pattern revealed by our study (Figs. 2, 4,
and 6), coupled with the allopatric distribution of these
two taxa, suggest that populations currently recognized
as D. schenga could have diverged from a lineage/popu-
lation of D. fasciolatus that colonized the Upper Zam-
bezi headwaters from the Kasai during the Pleistocene,
when the two river systems shared a past connection
[27-29]. This chronological and geographic dispersal
scenario out of the Congo Basin is consistent with our
estimated divergence time for this species pair (~ 1 Ma)
(Fig. 6) and the inferred range shift involving D. schenga
(Fig. 7), and has been hypothesized for various other fish
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taxa across the headwaters of the Congo-Zambezi water-
sheds [30-32].

In any case, a phylogenetic pattern of short, poorly
supported branches is an indicator of recent species di-
vergence that precluded mtDNA lineages from sorting
to reciprocal monophyly [33]. Therefore, as for the teu-
gelsi/decemmaculatus pair, we cannot rule out the possi-
bility that the inferred paraphyly of D. fasciolatus with
respect to D. schenga is an artifact of ILS issues. How-
ever, signal discordance between mtDNA and nuclear
markers involving the fasciolatus/schenga pair strongly
suggest that post-divergence introgressive hybridization
could also explain the inferred paraphyly of D. fasciola-
tus with respect to D. schenga.

A spatiotemporal framework for Distichodus
diversification

In the context of their time-scaled phylogeny of the sub-
order Citharinoidei, Arroyave et al. [18] were among the
first authors to estimate an age for the origin of Disti-
chodus and the timing of diversification within the
genus. Their chronogram suggested that the Distichodus
crown group appeared in the Miocene (~ 17 Ma), but
that most of the species diversity likely originated during
the past 5Ma. These inferences were based on a mo-
lecular clock calibrated using ~ 7.5 Ma Distichodus fos-
silized dentition [34], which at the time was the oldest
known fossil assignable to the genus. The recent discov-
ery of a considerably older (18—19 Ma) Distichodus fossil
[35], however, prompted our reexamination of the time-
scale of Distichodus diversification in the context of a
larger dataset, both in terms of molecular markers (8 vs.
7 loci) and taxon sampling (20 vs. 16 spp.). This older
fossil, however, presented us with the challenge of accur-
ately assigning it to a node for the purpose of calibrating
the molecular clock and estimating absolute times of di-
vergence in the phylogeny of Distichodus.

Whereas the approach devised herein to address the
uncertainties associated with the fossil-based calibration
of the molecular clock resulted in multiple alternative
chronograms, from our knowledge of the study subject
we believe that some of these alternative calibration sce-
narios might be either overly conservative (e.g., D+ P
stem) or too liberal (e.g., Dy + D,, crown), therefore
possibly resulting in under- or overestimation of node
ages, respectively. Nonetheless, because we have no
means to empirically falsify any of these alternative cali-
bration scenarios, we consider it important and valuable
to offer the reader the possibility of choosing among al-
ternative scenarios (including those we think too ex-
treme) based on their own knowledge of the study
subject and their personal beliefs regarding best prac-
tices for justifying fossil calibrations [36].
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For the most part, our findings imply a temporal
framework for the diversification of Distichodus older
than previously reported [18], irrespective of calibration
strategy. Only analyses 1 and 2, based on calibration
node D + P (stem), resulted in younger divergence time
estimates (Table 1). While at present we feel more com-
fortable grounding our discussion of the temporal and
geographic context for the diversification of Distichodus
in the results from analysis 8 (intermediate in terms of
calibration node [D, crown] and Pos SMB [30 Ma]), we
acknowledge that, should this calibration fossil be even-
tually confirmed as D. nefasch, D. rostratus, or their
MRCA (a possibility due to fossil tooth shape, size, and
geographic distribution), a reinterpretation of the bio-
geographic history will be necessary to reconcile the in-
ferred patterns of geographic range evolution with a
chronological framework more than twice as old as the
one discussed below (Fig. S21).

Despite the high ichthyofaunal diversity of Afrotropical
continental waters, few studies have investigated the
chronological and biogeographic context for the diversifi-
cation of African freshwater fish clades, among which only
a handful have focused on Pan-African riverine genus-
level radiations, namely Hydrocynus [30], Mastacembelus
[37, 38] and the species-rich Synodontis [32, 39]. Notably,
a Miocene diversification for Distichodus, as implied by
the chronogram resulting from analysis 8 (Fig. 6), broadly
concurs with previous findings for both Mastacembelus
and Synodontis [32, 38, 39]. Similarly, a concurrence of
Miocene diversification among various lineages of fishes,
frogs, and crabs has been pointed out by Daniels et al.
[40], who suggest this likely reflects a shared response to
mesic climatic shifts resulting in marked allopatric differ-
entiation among each of these freshwater lineages during
the mid- to late Miocene. While to our knowledge there
are no empirical studies proving a causal relationship be-
tween particular paleohydrological events and diversifica-
tion patterns in African freshwater fishes, some authors
have suggested that Miocene tectonic and climatic up-
heaval may have influenced or even triggered diversifica-
tion [31, 38]. The Miocene geological epoch was the
setting for widespread epeirogenic uplift in Africa and glo-
bal climate change that profoundly contributed to shaping
the modern African hydrological landscape [41-43],
which in turn, it is believed, promoted diversification in
freshwater fishes as a consequence of river discharge shifts
(due to climate change) and drainage disruption and
modification (due to rifting) [44]. Our findings about the
timing of Distichodus diversification add to instances of
Miocene continent-wide freshwater radiations, and there-
fore to a growing body of evidence in support for a
“hydrogeological” hypothesis, that paleohydrological and
paleoclimatic changes promote landscape evolution which
in turn promotes cladogenesis in freshwater organisms
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[45, 46]. Further research, however, ideally in a multi-
taxon comparative framework, is certainly needed to ro-
bustly test hypotheses of concerted responses to paleogeo-
logic and paleoclimatic scenarios.

Analysis of geographic range evolution on the phyl-
ogeny of Distichodus favored a biogeographic model in
which the Congo Basin (CB) is the center of origin (an-
cestral area) and source of the geographic diversity of
the genus, irrespective of absolute times of divergence.
In particular, the biogeographic reconstruction based on
the chronogram resulting from analysis 8 (Fig. 7), im-
plies that most cladogenetic events occurred in lineages
still confined to the CB throughout most of the Mio-
cene, but also multiple lineage range shifts out of and
expansions from the CB into adjacent ichthyofaunal
provinces at different times during the evolutionary his-
tory of the group. Only in the late Miocene (~ 9-7 Ma)
are the first recorded instances of range shifts out of the
CB and of cladogenesis occurring in other ichthyofaunal
provinces, namely the Nilo-Sudan (NS) and Lower
Guinea (LG). The remaining instances of range shifts
and expansions are more recent, dating back to the Plio-
cene. While most ichthyofaunal provinces appear to
have been colonized only once (or twice in the case of
UQG), our results indicate that LG was independently col-
onized by five different lineages, mostly during the
Pliocene.

Our reconstruction of the biogeographic history of
Distichodus suggests a central role of the CB in the dis-
tribution of the continent’s freshwater ichthyofauna dur-
ing the late Cenozoic, offering support to the hypothesis
that the CB is the source of the ichthyofauna of less di-
verse river basins throughout continental Africa [44].
While a CB origin has also been postulated for the Afri-
can tigerfish Hydrocynus [30], other continent-wide Afri-
can freshwater fish genera such as Synodontis [32] and
Mastacembelus [38] do not conform to this pattern and
suggest repeated independent colonization into the CB.
Considering the vast geographic area under study, and
that complex evolutionary histories of dispersal and vic-
ariance are likely to exist among the different fish line-
ages, these conflicting biogeographic histories certainly
suggest a complex scenario for the assemblage of the
continent’s ichthyofaunal communities.

Conclusions

The spatiotemporal framework for the diversification of
African freshwater fish genus Distichodus presented
herein provides a significant advance in our knowledge
of the evolutionary history of this ecologically and socio-
economically important group of fishes. With few excep-
tions, the resulting phylogeny is consistent with the
current species-level taxonomy of the group, offering a
working hypothesis of Distichodus relationships that will
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serve as phylogenetic framework for future evolutionary
studies involving phenotypic and genomic systems. The
few instances of species paraphyly (D. teugelsi, D. fascio-
latus) revealed in our favored phylogeny are likely a con-
sequence of introgression and/or incomplete lineage
sorting due to recent speciation. Therefore, we refrain
from making taxonomic/nomenclatural changes pending
further morphological assessment based on a larger sam-
ple of comparative material. While analysis of geo-
graphic range evolution favored a biogeographic
scenario in which the Congo Basin is the source of geo-
graphic diversity of the genus, this finding is both in
agreement and conflict with previous studies of other
continent-wide African freshwater fish genera, suggest-
ing a complex scenario for the assemblage of Africa’s
continental ichthyofaunal communities.

Methods

Taxon sampling

Ingroup sampling consisted of 133 specimens represent-
ing 20 of the 25 valid Distichodus species, thereby
encompassing 80% of Distichodus currently recognized
diversity (Table 3). Distichodus brevipinnis, D. langi, D.
mossambicus, D. rufigiensis, and the newly described D.
ingae [12], were not included in analyses due to unavail-
ability of tissues. With the exception of D. altus, D.
nefasch, D. rostratus, and D. petersii, for which only a
single tissue sample was available, multiple individuals
per species were sequenced to sample as large a portion
of each species’ range as possible (Table 3). In addition
to increasing geographic coverage, inclusion of multiple
individuals per species allowed for testing the monophy-
letic status—and therefore species limits under the
phylogenetic species concept [47, 48]——of nominal spe-
cies from which more than one individual was available
for sequencing. Sampling of multiple individuals per spe-
cies, however, was not aimed at making inferences about
tokogenetic (intraspecific) relationships and/or phylo-
geographic patterns. Paradistichodus dimidiatus was in-
cluded as outgroup based on the findings from a
relatively recent molecular phylogenetic study that inves-
tigated relationships of the Distichodontidae [18], which
resolved the monotypic genus Paradistichodus as the sis-
ter group of Distichodus. Similarly, Nannocharax ansor-
gii was included as additional and outermost outgroup
for molecular dating and inference of geographic range
evolution analyses.

Most tissue samples were obtained from specimens
collected during recent expeditions in West and West-
Central Africa by a research team from the American
Museum of Natural History (AMNH) (led by co-author
MLJS). Specimens were handled and euthanized prior to
preservation in accordance with recommended guide-
lines for the use of fishes in research [49] and stress was
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ameliorated by minimizing handling and through the
use of the anesthetic Tricaine mesylate (MS-222) for eu-
thanasia. Tissue samples were taken in the field and im-
mediately preserved in 95% ethanol. Voucher specimens
were fixed in formalin and subsequently transferred to
70% ethanol for long-term storage. Data for specimens
cataloged and stored in the ichthyology collection of the
AMNH, are available online at http://sci-web-001.amnh.
org/db/emuwebamnh/index.php.

Specimen collection was made in accordance with eth-
ical and legal guidelines for international animal research
approved by the AMNH Institutional Animal Care and
Use Committee (IACUC) (approval #36/06). The
AMNH IACUC has guidelines relating to studies involv-
ing its members in different countries, and this study
conforms to those guidelines. Specimen collection and
exportation of samples used in this study follow institu-
tional and national ethical and legal guidelines of the
Ministry of Fishery and Aquaculture, Republic of
Guinea, No. 65/MPA/DGAGSP/11; the Ministry of Sci-
entific Research and Technical Innovation, Republic of
Congo, No. 031/MRSIT/DGRST/GERBID.06.13; and the
Ministry of Agriculture and Fisheries, Democratic Re-
public of Congo, No. 037/DP/SG/AGRIPEL/16.

Additional samples were obtained from colleagues at
the Cornell University Museum of Vertebrates (CUMV),
the Royal Museum for Central Africa (MRAC), and the
South African Institute for Aquatic Biodiversity (SAIAB).
Voucher specimens are deposited in the ichthyology col-
lections of the AMNH, CUMV, MRAC, and SAIAB.
Species identity of non-AMNH vouchers was confirmed
either by direct examination of loaned specimens, photo-
graphs provided, or on taxonomic authority of the
loaning institution. Voucher catalog numbers and Gen-
Bank accession numbers for the gene sequences gener-
ated and included in this study are listed in Table 3.

Gene sampling and nucleotide data collection

Eight gene fragments, including the seven protein-
coding loci sampled by Arroyave et al. [18] to address
distichodontid interrelationships (col, cytb, encl, glyt,
myh6, nd2, and sh3px3) were sequenced. Additionally, a
faster-evolving mitochondrial non-coding marker, con-
trol region (cr), was added to address more recent diver-
gences within the genus. DNA sequence data was
generated from a total of 133 Distichodus individuals.
General procedures for DNA extraction, amplification,
and purification, along with primers and thermal profiles
for sequencing the protein-coding genes used in this
study follow Arroyave and Stiassny [50] and Arroyave
et al. [18]. Distichodus-specific primers for cr (cr_Dist_f:
5'-AGCGCCGGTCTTGTAATCCG-3"; cr_Dist r: 5'-
TGCTTGTGGAACTTTCTAGGGTCCAT-3") were de-
signed using the software Primer3 [51] from conserved
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flanking regions of aligned mtDNA control region se-
quences extracted from the two distichodontid complete
mitochondrial genomes available in GenBank (Disticho-
dus sexfasciatus AB070242 and Ichthyborus sp.
AP011993). Amplification of cr via PCR was carried out
using the following thermal profile: 5-min initial de-
naturation at 95 °C, followed by 35 cycles of denaturation
at 95°C for 60s, annealing at 58 °C for 60s, and exten-
sion at 72 °C for 120s, followed by a 10-min final exten-
sion at 72 °C.

Sequence editing and partitioning scheme/substitution
model selection

Contig assembly and sequence editing was performed
using Geneious v.11.0.2 [52]. IUPAC nucleotide ambigu-
ity codes were used to represent heterozygous sites. The
resulting sequences were trimmed to exclude primer re-
gions and examined for appropriateness/homology using
BLASTx [53]. Each gene was aligned using MUSCLE
[54] under default parameters as implemented in Gen-
eious, followed by concatenation of individual align-
ments. All sequences were checked for stop codons and
for miscalled amino acids by examining translation
alignments.

Best-fit partitioning schemes and models of molecular
evolution for the nucleotide data were determined using
PartitionFinder2 [55] based on 22 pre-defined data
blocks: the non-coding mtDNA control region (1 block)
plus the 1st, 2nd, and 3rd codon positions of the seven
protein-coding genes (3 positions x 7 genes). The Parti-
tionFinder2 greedy algorithm was employed to search
for an optimal scheme under the assumption of inde-
pendent model parameters and branch lengths for each
partition. Selection of the partitioning scheme and
models over the set of schemes and models produced
during greedy search was accomplished using the
Schwarz/Bayesian Information Criterion (BIC) [56].

Phylogenetic, biogeographic, and chronological analyses
Various analytical approaches were employed to infer
phylogenetic relationships in Distichodus from the mul-
tilocus dataset generated in this study, one of which also
simultaneously estimates absolute times of divergence in
the resultant phylogeny. The results from the latter ap-
proach were subsequently used in analyses for testing
historical biogeographic hypotheses of geographic range
evolution in Distichodus.

Maximum likelihood (ML) estimation of phylogeny

Phylogenetic analysis of the concatenated alignment of
the eight sampled genes under a Total Evidence/Simul-
taneous Analysis [57, 58] approach was performed using
the ML optimality criterion. Furthermore, to examine
the degree of variation in topology, resolution, and clade
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support among the individual sampled loci, and to com-
plement the inferences made from the simultaneous ana-
lysis of all markers, each of the nuclear genes (encl, glyt,
myh6, sh3px3) and a concatenated alignment of the mito-
chondrial genes (col, cr, cyth, nd2; effectively inherited as
a single locus), were independently analyzed, also using
the ML optimality criterion. ML phylogenetic analyses
were conducted with RAXML v.8 [59] through the CIPRES
Science Gateway v.3.3 [60] as a single partition under the
GTRGAMMA model with four rate classes using full ML
optimization for the tree search and 1000 rapid bootstrap
(BS) searches to assess nodal support [61].

Species-tree approaches

Although concatenation methods have been suggested
to often perform well when incomplete lineage sorting
(ILS) levels are low [24], the degree of ILS in Distocho-
dus is unknown. To explore the outcomes of ILS-aware
species-tree analyses relative to concatenation, both
SVDquartets [62] and ASTRAL-III [63] were employed.
SVDquartets has been suggested to perform well with
low ILS and small numbers of sites per gene, and ASTR
AL methods have been suggested to perform well under
high ILS conditions, but may be sensitive to small num-
bers of sites per gene [24]. SVDquartets analysis was
conducted in PAUP* v4.0al64 [64] sampling all ~ 8.6
million quartets under the multispecies coalescent on
the full dataset, using the default QFM quartet assembly
method. Bootstrap support values were assembled onto
the SVDquartets tree using the sumtrees command in
the DendroPy package [65]. Gene trees input to ASTR
AL-III were estimated from best-fit codon models in-
ferred in codonPhyML [66] under default search inten-
sity, using custom R scripts written by the authors.
Because the mitochondrial genome does not undergo re-
combination and is inherited as a single locus, the three
protein-coding mitochondrial genes were fit with a sin-
gle codon model and inferred gene tree. Gene trees for
each autosomal locus were inferred separately.

Bayesian co-estimation of phylogeny and divergence
times

Prior to co-estimation of phylogeny and divergence
times, a new data matrix was created from the original
multi-individual, multi-locus matrix, by including DNA
sequence data from only a single individual per species,
from or near the type locality whenever possible (for
each sampled species, the first individual listed in Table
3). The resulting reduced matrix was analyzed in BEAST
v.2.5.0 [67] under the optimal partitioning scheme and
substitution models suggested by the PartitionFinder2
analysis. Node ages were estimated using a Bayesian
relaxed-clock method [68] under the uncorrelated log-
normal (UCLN) rate variation model, and assuming a
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birth-death process prior for topology and divergence
times. By default, the prior on the mean parameter of
the UCLN clock model (ucldMean.c) is a uniform distri-
bution on the interval (0,e), which is an uninformative
and improper prior (it does not integrate to 1). Although
improper priors can sometimes lead to proper posterior
distributions, they may also have undesired effects and
cause problems with mixing and convergence [69].
Based on previous findings regarding substitution rates
in Distichodus [18], we assumed a log-normally distrib-
uted prior for the clock rate (ucldMean.c) with hyper-
parameters p = 0.003 and o = 0.5. On the other hand, the
standard deviation parameter of the UCLN clock model
(ucldStdev.c) is by default assigned a gamma distribution
prior. Variation in substitution rates among branches in
Distichodus, however, appears to be low in general [18].
Accordingly, we assumed an exponential prior distribu-
tion with 95% of the probability density on values < 1 for
the standard deviation of the UCLN (ucldStdev.c).

The molecular clock was calibrated based on early
Miocene (ca. 18 Ma) fossilized dentition attributable to
Distichodus recovered from deposits of the Maradah
Formation in Jabal Zaltan, Libya, by far the oldest fossil
unambiguously assignable to the genus [35]. In fact, this
fossil pushes back the first known appearance of Disti-
chodus in the fossil record by 10 Ma with respect to the
Distichodus calibration fossil used by Arroyave et al. [18]
to infer a time-scaled phylogeny of citharinoid fishes. Al-
though the Maradah fossil is unquestionably diagnostic
of Distichodus (tall, slender necked tooth with a bifid
apex bearing characteristically short and rounded lobes)
and could potentially be ascribed to either Distichodus
nefasch or D. rostratus on the basis of size and geo-
graphic distribution, its exact phylogenetic placement is
unknown. The absence of relevant comparative morpho-
logical data in a phylogenetic context to which to inte-
grate the fossil taxon, coupled with its fragmentary
nature, renders it difficult to confidently assign it to a
particular node and to determine whether it should be
used to constrain the age of the stem or the crown
group of the calibration node. Because of this phylogen-
etic uncertainty, along with the challenge of objectively
establishing a maximum age constraint to the calibration
node, we conducted a series of analyses (Table 4) to as-
sess the robustness of node ages to analytical ambiguity
and to offer alternative output scenarios based on a var-
iety of reasonable input parameters, particularly with re-
spect to the phylogenetic placement of the calibration
node and its maximum age constraint. Specifically, we
used three alternative calibration nodes: 1) MRCA of
Distichodus and Paradistichodus (D + P), 2) MRCA of
Distichodus (D), and 3) MRCA of D. nefasch and D. ros-
tratus (Dpe + D,,). The rationale behind this proposal is
that, at the very least, the calibration fossil could be used
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Table 4 Alternative BEAST2 analyses (1-15) for co-estimating
phylogeny and divergence times in Distichodus resulting from
variable calibration strategies (calibration node, stem vs. crown
group, and 95th percentile [Pgs] soft maximum bound [SMB] of
calibration prior)

Calibration node Lognormal PDF Pgs SMB

20 Ma 30 Ma 40 Ma
MRCA of Distichodus & Stem 1 2 3
Paradistichodus Crown 4 s 6
MRCA of Distichodus Crown 7 8 9
MRCA of D. nefasch & Stem 10 11 12
D rostratus Crown 13 14 15

to constrain the age of divergence between Distichodus
and its sister group, Paradistichodus, but under more
liberal phylogenetic designations, it could also be used to
constrain the age of the entire genus or even the diver-
gence between the species D. nefasch and D. rostratus.
Furthermore, each calibration node was constrained
both as stem and as crown group. Additionally, the tem-
poral uncertainty of calibration nodes was modeled
using log-normally distributed priors with a hard mini-
mum bound set by the age of the fossil (18 Ma) and one
of three alternative 95th percentile soft maximum
bounds (Pgs SMBs): 20, 30, and 40 Ma (Fig. 8; Table 4).
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The combinatorial exercise of choosing one of three al-
ternative calibration nodes, constrained as stem or
crown, and modeled by a log-normally distributed prior
characterized by one of three alternative Pgs SMBs, re-
sulted in 18 different analyses (although effectively 15
since the node representing the MRCA of Distichodus as
stem is equivalent to the node representing the MRCA
of Distichodus and Paradistichodus as crown (Table 4).
In each analysis, root age was indirectly constrained (as
an implied prior) by the combined effects of the calibra-
tion prior on other internal node and the prior for top-
ology and divergence times (birth-death process).
BEAST2 analyses were implemented using the Markov
Chain Monte Carlo algorithm (MCMC) run for 50 mil-
lion generations sampled every 1000 generations, under
default proposal mechanisms and default priors for the
parameters of the birth-death branching process used to
provide the prior distribution for the non-calibration
nodes (speciation and extinction rates) and the model of
molecular evolution for each gene (substitution rates,
base frequencies, gamma shape, and proportion of in-
variant sites). Convergence model parameter estimates
were assessed via ESS values over 200, using Tracer v.1.7
[70]. Sufficient sampling of the estimate of the tree top-
ology (ESS >200) was determined by dividing the topo-
logical approximate ESS by the generation number of
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Fig. 8 Alternative log-normally distributed priors used to account for temporal uncertainty of calibration nodes. Each prior probability density
function (PDF) is characterized by a hard minimum bound of 18 Ma (set by the age of the calibration fossil), a standard deviation (o) of 0.5, and a
variable mean () (in real space) that probabilistically models the extent to which the node age spreads into the past: u= 19 (black), u =24 (blue),
and p =29 (red). The lower limit of the x-axis interval defining the area shaded under each curve corresponds to its 95th percentile soft
maximum bound (Pos SMB): 20 Ma (black), 30 Ma (blue), and 40 Ma (red)
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the approximate earliest stationary value in the topo-
logical autocorrelation plot, generated in the R package
rwty [71]. Further assessment of MCMC convergence
was undertaken by examination of the average standard
deviation of split frequencies, with values << 0.01 taken
as indicative of stationarity. All analyses used a 10%
burn-in. A maximum clade credibility (MCC) topology
was inferred using TreeAnnotator v.2.5 [67], resulting in
a chronogram indicating posterior probabilities (PP) and
mean ages of all nodes with their associated 95% highest
posterior density (HPD) intervals.

Inference of geographic range evolution

The evolution of geographic ranges in Distichodus was
investigated using the null-range-excluded dispersal-
extinction-cladogenesis model (DEC*) [72], a modified
version of the original likelihood-based dispersal-
extinction-cladogenesis (DEC) model [73, 74]. The set of
discrete geographic areas for the DEC* analysis consisted of
the six Afrotropical ichthyofaunal provinces of Roberts [1]
(modified by Lévéque [2]) with presence of Distichodus spe-
cies: Congo Basin (CB), Zambezi (Z), Nilo-Sudan (NS),
Upper Guinea (UG), Lower Guinea (LG), and East Coast
(EC) (Fig. 1). African ichthyofaunal provinces were delim-
ited on the basis of current and historical patterns of drain-
age connectivity and the composition of the fish fauna, and
therefore represent regions with a distinctive evolutionary
history and a more or less characteristic biota at the species
and higher taxonomic levels [1, 2]. To assess the relative fits
of alternative models of faunal assemblage in the Congo
Basin, three variants of the DEC* model were fit to the data
in the BioGeoBEARS R package [75], following the
parameterization of dispersal multipliers from Day et al.
[38]: MO, an unconstrained multiplier matrix allowing for
dispersal to and from the Congo Basin; M1, an asymmetric
multiplier matrix allowing only dispersal out of the Congo
Basin (CB-as-source); M2, an asymmetric multiplier matrix
allowing only dispersal into the Congo Basin (CB-as-sink).
Tip-state ranges were assigned based on the presence of
species in different ichthyofaunal provinces. In several
cases, species spanned multiple provinces. The maximum
range size was set to widespread (all six ichthyofaunal prov-
inces). Given the high dimensionality of the transition
matrix resulting from the combination of different prov-
inces (areas) into ranges of sizes up to six, relative to the
size of the dataset, 14 disjunct ranges of differing sizes were
pruned from analysis, reducing the dimensionality of the
matrix from 64 x 64 to 50 x 50. To assess the stability of
numerical optimization, analysis was run five times from
fresh R sessions. Model fits of the M0, M1, and M2 variants
were compared using the Akaike information criterion [76]
and supports were assessed using Akaike weights [77]. In
an effort to take account of chronological uncertainty due
to alternative molecular clock calibration scenarios,
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inference of geographic range evolution in Distichodus was
conducted on three of the 15 time-scaled phylogenies pre-
viously inferred with BEAST2, namely the chronograms
resulting from analyses based on each alternative calibra-
tion node constrained as crown and by a relatively moder-
ate soft maximum bound (Pgs SMB = 30 Ma) (analyses 5, 8,
and 14 in Table 4).
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Supplementary information accompanies this paper at https://doi.org/10.
1186/512862-020-01615-6.

Additional file 1: Figure S1. enc! Distichodus phylogeny as inferred by
likelihood in RAXML. Colored circles on nodes indicate degree of clade
support as determined by bootstrap values (BS). The identity of leaves
(terminals) not printed on the tree is specified by the species name (in
bold) at the base of the most recent labeled ancestral node from which
the sample descends. Names in bold black correspond to those species
resolved as monophyletic (when multiple individuals were available),
whereas those in bold green indicate that, while most of the sampled
specimens fall into the clade subtended by that node, some samples fall
outside the clade, and therefore the species is not resolved as
monophyletic. Outgroup taxon (Paradistichodus dimiatus) not shown.

Additional file 2: Figure S2. glyt Distichodus phylogeny as inferred by
likelihood in RAXML. Same contextual information as in Fig. S1.

Additional file 3: >Figure S3.. myh6 Distichodus phylogeny as inferred
by likelihood in RAXML. Same contextual information as in Fig. S1.

Additional file 4: Figure S4. sh3px3 Distichodus phylogeny as inferred
by likelihood in RAXML. Same contextual information as in Fig. S1.

Additional file 5: Figure S5. mtDNA (col, cr, cytb, nd2) Distichodus
phylogeny as inferred by likelihood in RAXML. Same contextual
information as in Fig. S1.

Additional file 6: Figure S6. A time-scaled phylogeny of Distichodus.
Chronogram resulting from BEAST2 analysis 1. Same contextual informa-
tion as in Fig. 6.

Additional file 7: Figure S7. A time-scaled phylogeny of Distichodus.
Chronogram resulting from BEAST2 analysis 2. Same contextual informa-
tion as in Fig. 6.

Additional file 8: Figure S8. A time-scaled phylogeny of Distichodus.
Chronogram resulting from BEAST2 analysis 3. Same contextual informa-
tion as in Fig. 6.

Additional file 9: Figure S9. A time-scaled phylogeny of Distichodus.
Chronogram resulting from BEAST2 analysis 4. Same contextual informa-
tion as in Fig. 6.

Additional file 10: Figure S10. A time-scaled phylogeny of Distichodus.
Chronogram resulting from BEAST2 analysis 5. Same contextual informa-
tion as in Fig. 6.

Additional file 11: Figure S11. A time-scaled phylogeny of Distichodus.
Chronogram resulting from BEAST2 analysis 6. Same contextual informa-
tion as in Fig. 6.

Additional file 12: Figure S12. A time-scaled phylogeny of Distichodus.
Chronogram resulting from BEAST2 analysis 7. Same contextual informa-
tion as in Fig. 6.

Additional file 13: Figure S13. A time-scaled phylogeny of Distichodus.
Chronogram resulting from BEAST2 analysis 9. Same contextual informa-
tion as in Fig. 6.

Additional file 14: Figure S14. A time-scaled phylogeny of Distichodus.
Chronogram resulting from BEAST2 analysis 10. Same contextual informa-
tion as in Fig. 6.

Additional file 15: Figure S15. A time-scaled phylogeny of Distichodus.
Chronogram resulting from BEAST2 analysis 11. Same contextual informa-

tion as in Fig. 6.
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Additional file 16: Figure S16. A time-scaled phylogeny of Distichodus.
Chronogram resulting from BEAST2 analysis 12. Same contextual informa-
tion as in Fig. 6.

Additional file 17: Figure S17. A time-scaled phylogeny of Distichodus.
Chronogram resulting from BEAST2 analysis 13. Same contextual informa-
tion as in Fig. 6.

Additional file 18: Figure S18. A time-scaled phylogeny of Distichodus.
Chronogram resulting from BEAST2 analysis 14. Same contextual informa-
tion as in Fig. 6.

Additional file 19: Fig. S19. A time-scaled phylogeny of Distichodus.
Chronogram resulting from BEAST2 analysis 15. Same contextual informa-
tion as in Fig. 6.

Additional file 20: Figure S20. A spatiotemporal reconstruction of
Distichodus range evolution. Based on the optimal DEC* model (M1; CB-
as-source) and input chronogram resultant from BEAST2 analysis 5. Ich-
thyofaunal provinces color-coded and abbreviated as in Fig. 1. Probabil-
ities of ancestral areas at each node are presented in Table S2.

Additional file 21: Figure S21. A spatiotemporal reconstruction of
Distichodus range evolution. Based on the optimal DEC* model (M1; CB-
as-source) and input chronogram resultant from BEAST2 analysis 14. Ich-
thyofaunal provinces color-coded and abbreviated as in Fig. 1. Probabil-
ities of ancestral areas at each node are presented in Table S3.

Additional file 22: Table S1. Probabilities of ancestral states/ranges at
each node of the spatiotemporal reconstruction of Distichodus range
evolution presented in Fig. 7. Columns indicate ancestral areas,
represented by all unique combinations for all possible group sizes for
the six ichthyofaunal provinces. Rows indicate nodes, with numbering
following the typical R phylo format, i.e, 1 is the first tip taxon/area,
beginning at the bottom. After the last tip value, the numbering begins
at the root, and moves tipward. Ichthyofaunal provinces abbreviated as
in Fig. 1.

Additional file 23: Table S2. Probabilities of ancestral states/ranges at
each node of the spatiotemporal reconstruction of Distichodus range
evolution presented in Fig. S20. Same contextual information as in Table S1.
Additional file 24: Table S3. Probabilities of ancestral states/ranges at
each node of the spatiotemporal reconstruction of Distichodus range
evolution presented in Fig. S21. Same contextual information as in Table S1.
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