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Abstract

Background: Invasion of organisms into new ecosystems is increasingly common, due to the global trade in
commodities. One of the most complex post-invasion scenarios occurs when an invasive species is related to a
native pest, and even more so when they can hybridize and produce fertile progeny. The global pest Helicoverpa
armigera was first detected in Brazil in 2013 and generated a wave of speculations about the possibility of
hybridization with the native sister taxon Helicoverpa zea. In the present study, we used genome-wide single
nucleotide polymorphisms from field-collected individuals to estimate hybridization between H. armigera and H. zea
in different Brazilian agricultural landscapes.

Results: The frequency of hybridization varied from 15 to 30% depending on the statistical analyses. These
methods showed more congruence in estimating that hybrids contained approximately 10% mixed ancestry
(i.e. introgression) from either species. Hybridization also varied considerably depending on the geographic
locations where the sample was collected, forming a ‘mosaic’ hybrid zone where introgression may be
facilitated by environmental and landscape variables. Both landscape composition and bioclimatic variables
indicated that maize and soybean cropland are the main factors responsible for high levels of introgression in
agricultural landscapes. The impact of multiple H. armigera incursions is reflected in the structured and inbred
pattern of genetic diversity.

Conclusions: Our data showed that the landscape composition and bioclimatic variables influence the
introgression rate between H. armigera and H. zea in agricultural areas. Continuous monitoring of the
hybridization process in the field is necessary, since agricultural expansion, climatic fluctuations, changing
composition of crop species and varieties, and dynamic planting seasons are some factors in South America
that could cause a sudden alteration in the introgression rate between Helicoverpa species. Introgression
between invasive and native pests can dramatically impact the evolution of host ranges and resistance
management.
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Background

An invasive pest can cause adverse effects of various de-
grees of severity, as high adaptation potentials and dis-
persal can cause dramatic costs to ecosystem services
and agricultural production [1-4]. Managing these costs
is significantly more difficult in cases where the invasive
species is related to a native species and is exacerbated
when there is potential for fertile hybridization [5]. The
‘hybrid bridge” hypothesis provides a mechanism for host
shifting and host expansion in herbivorous insect pests
and suggests that hybridization events might combine
lineage-specific adaptations within a single organism [6].
Interspecific gene flow (introgression) can be uni- or bi-
directional and facilitated by the ecological context of
the interaction between the two species [6]. Due to po-
tential differences in introgression, the proper diagnosis
of hybridization encounters serious difficulties since, at
the genomic level, markers must be genome wide (to
identify areas of introgression) and distinguish between
true species [7, 8]. Without such information, challenges
will persist for improving pest management and mitigat-
ing the effects of invasive species [8, 9].

The invasive bollworm Helicoverpa armigera (Lepidoptera:
Noctuidae) is native to the Old World (Asia, Europe, Africa,
and Australasia) and is one of the most important
pests worldwide [8]. This insect has an annual impact
of billions of dollars, caused by crop damage and the
high cost of pest control [5]. For those reasons, H.
armigera is a threat for crops in the New World and
is designated a quarantine pest in many countries,
including Brazil. Since the first report from the
Americas in 2013 [5], much research has been de-
voted to understanding its potential for global spread
[10]. Helicoverpa armigera is now a ‘world mega pest’
because of its rapid evolution of resistance to syn-
thetic insecticides and, more recently, to genetically
modified plants containing Bt protein [8, 11, 12].

Other species of Helicoverpa, such as the corn ear-
worm (H. zea), are present in many New World coun-
tries. Helicoverpa zea is morphologically similar to H.
armigera, and these two species diverged around 1.5
Mya [13]. Although the evolutionary relationship be-
tween H. armigera and H. zea is not fully understood,
the two species appear to be monophyletic with the
common ancestor H. assulta [14]. Helicoverpa zea likely
derived from a small population of H. armigera that in-
vaded areas of the New World in the past, which may
explain the lower destructive capacity of H. zea com-
pared to H. armigera [13].

Unlike other congeners, H. zea and H. armigera are
highly polyphagous and can produce fertile hybrids [15,
16]. A complex pattern of genetic structure and gene
flow exists within H. armigera populations across the
globe [17-22]. Genetic diversity and structure could be
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attributed to interactions between agricultural practices
and the life history of the organism. Adding to this com-
plexity are differences in the molecular markers among
studies that can include isoenzymes [17], mitochondrial
DNA [18], sodium channel sequences [19], and microsa-
tellites [20, 21]; these studies have not found clear, fine-
scale genetic structure. Nevertheless, the high gene flow,
low genetic differentiation, and large effective population
sizes are common occurrences in insect pest moth spe-
cies, including most Helicoverpa populations worldwide
[22, 23].

After the South American invasion, both Helicoverpa
species have coexisted in the complex host compositions
across the Brazilian agriculture landscapes. These land-
scapes generally consist of a large number of crops that
form a mosaic with natural areas. More intensively
farmed areas such as the Cerrado (central high plateau),
are dominated by cotton, soybean, and maize [24]. In
Brazil, H. zea is a primary pest of maize (monocotyle-
dons), whereas H. armigera feeds primarily on soybean
and cotton (dicotyledons). Hybridization could result in
more intense pressure of caterpillar feeding on soybean,
and introgression of H. zea genes associated with resist-
ance to pesticides and Bt crops into H. armigera. The
potential for hybridization requires additional validation
with more powerful markers providing sufficient reso-
lution to detect introgression.

In this study, we used genome-wide single nucleotide
polymorphisms (SNPs) to detect hybrids in the most
critical agricultural production areas in Brazil. We also
quantified the extent of introgression, which was corre-
lated with landscape and environmental attributes and
appeared to facilitate hybridization. In a broader context,
this research can improve our understanding of how
rapidly changing ecosystems favor evolutionary adapta-
tion through hybridization between native and invasive
species.

Results

Genetic structure and hybridization

The non-model-based PCA generated two clusters cor-
responding to mitochondrial identification, using a frag-
ment of the COI region (Fig. la). The data showed
detectable overlapping between genetic groups, indicat-
ing possible hybridization events occurring at a mini-
mum of five locations: AGOSA, APRLO, AMTSA,
AMTCYV, and ZPRPA (Fig. 1b). Calculations included
putative hybrids and pure-bred insects and were based
on 16,698 SNP markers. Fixation index (Fst) among
sampling locations showed a high degree of genetic dif-
ferentiation, with a mean value of 0.264. Much higher
genetic differentiation occurred among H. armigera
(FsT = 0.23) compared to H. zea (Fst = 0.07) Pairwise Fgr
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Fig. 1 (a) Principal components analysis (PCA) performed with 16,698 SNP markers. (b) Color schemes indicate species according to
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estimates among the H. armigera collection locations
did not show a geographic pattern of structure (Fig. 2a).

The genetic divergence between H. armigera and H.
zea samples can be clearly differentiated in the results
from both STRUCTURE and NewHybrids; these ana-
lyses also showed a consistent presence of putative
hybrids between the two species (Fig. 2b). Consider-
ing the information derived from the host plant,
mitochondrial DNA, and SNPs to infer hybridization,
our analyses concurred that 26 insects showed mixed
ancestry (~ 15%), with an average mean rate of intro-
gression of 10% and no significant differences be-
tween the species (H. armigera: x = 0.15, SD =0.28;
H. zea: ¥ = 0.10, SD=0.25) (f=-0.08, SE=0.06, t-
value = - 1.35, p <0.18). Bayesian assignment analyses
indicated that the specimens of H. zea from two of

the four locations had pure ancestry (ZBASD and ZSPPI),
whereas the specimens from the two remaining locations
showed detectable levels of hybridization with H. armigera
[ZPRPA: p = 0.20 (armigera); ¢ = 0.80 (zea) and ZGORV:
p = 0.14 (armigera); ¢ = 0.86 (zea)] (Fig. 2b). A total of 7
out of 9 collection locations where mitochondrial DNA
identified as H. armigera showed signs of hybridization,
based on STRUCTURE and NewHybrids.

According to STRUCTURE, the most extensively
“hybridized” location was PRLO [(p = 0.60 (armigera);
g = 0.40 (zea)], while NewHybrids identified AGOSA
as the most extensively “hybridized” [(p = 0.50 (armi-
gera); q¢ = 0.50 (zea)]. The NewHybrids approach de-
tected fewer putative hybrids in our samples than
structure analysis, and successfully flagged one puta-
tive F; hybrid in AGOSA (Fig. 2b, red vertical bar).
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Fig. 2 Genetic structure and hybrid detection. (a) Pairwise Fst using 16,698 SNP markers. Darker color indicates greater degree of differentiation
(b) Structure plot results from STRUCTURE (K= 2 and K=4) and NewHybrids software based on 977 independent SNP markers. Bar-plot colors
indicate group membership proportions in different values of K (e.g., 2 and 4). NewHybrids were classified as one of six possible genotypes:
purebred H. armigera (dark blue) and H. zea (light blue) individuals, F; or F, hybrids (red and pink), or backcrosses with pure genotypes of either
species. STRUCTURE and Fst — the deeper the color, the higher the Fst value and the greater the differentiation. Species label groups identify
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We used the STRUCTURE estimates of introgression
(K=2), as our response variable used in subsequent
linear mixed models. The results confirmed the sig-
nificant effect of location, when species was the ran-
dom factor (8=0.29, SE=0.05 ¢t-value=543, p<
0.000) (Fig. 3).

Presence and direction of gene flow

The results from Treemix largely agreed with the
other inferences, successfully separating samples into
two broad groups that corresponded to the long-term
isolated lineages of H. armigera and H. zea (Fig. 4).
Treemix also indicated at least three events of
hybridization and one of admixture between H. armi-
gera populations (m =4), based on the locations sam-
pled. The main direction of interspecific gene flow seemed
to be from H. zea to H. armigera, affecting insects from
APRLO, AMCYV, and AGOSA (Fig. 4).

Modeling the effects of landscape and environmental
variables on hybridization
The secondary contact between the two species was
patchy and formed a mosaic of hybrid and non-
hybrid zones (Fig. 5). To evaluate the potential impact
of environmental variables on the rates of introgres-
sion between H. zea and H. armigera in Brazil, we
orthogonally transformed climate and landscape vari-
ables, using two separate PCA analyses. The group of
climate and landscape variables was first condensed
into principal components, and the first axis of each
PC was used as the predictor variable. The effects of
population and species were controlled in our models.
Climate variables had significant effects on the
introgression rate into H. armigera (f=0.08, SE =
0.03, t-value =3.49, p<0.00) (Fig. 6a). The most im-
portant variable was the “mean temperature of the
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Fig. 3 Boxplot showing introgression proportions, using STRUCTURE
(K= 2) estimates across different geographical locations. Colors
identify groups according to mitochondrial COIl genotyping
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Fig. 4 Maximum-likelihood tree constructed in Treemix based on
977 SNP markers with four migration events. Most migration events
tended to move from H. armigera to H. zea. Among H. armigera,
migration events occurred from AGOMO to ABASD

coldest quarter” (BIO11) (PC1l contribution =7.96),
“annual temperature range” (BIO1) (PCl contribu-
tion = 7.46), and “precipitation in the driest month”
(BIO14) (PC1 contribution = 7.16) on the first PC axis
(58%). Evaluating the contribution of each location
sampled to the first principal component, the largest
variance contributions came from APRLO (PC1 con-
tribution =28.92) and APRPA (PCl contribution =
23.21).

Landscape variables had a smaller but significant ef-
fect on the introgression rate in H. armigera (5= -
0.09, SE=0.037, t-value=-2.43, p<0.04) (Fig. 6b).
The cumulative variance on the first two axes con-
tributed 58.14% of the total variance. The most im-
portant variable was maize (PC1 contribution = 22.41),
followed by tree plantations (PC1l contribution =
13.94) and soybean (PC1 contribution = 13.86) on the
first PC axis (32.8%). Evaluating the contribution of
each sampling location to the first principal compo-
nent, the largest variances came from ZPRPA (PC1
contribution =42.3) and ASPPI (PC1 contribution =
25.01).

When we compared different model sets that contained
explanatory variables (combined or individually), we
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determined that the full model best explained the ob-
served variance (AIC = 94.7), compared to the naive model
(AIC=9842, ¥* = 7.69, p=0.2), climate-only model
(AIC=47.12, ¥* = 4.39, p=0.04), or the landscape-only
model (AIC = 100.05, y* = 7.32, p = 0.006).

Discussion

Hybridization, asymmetric gene flow, and levels of
introgression

Our data confirmed hybridization between H. armigera
and H. zea in Brazilian crop fields [8, 9, 25]. Interspecific
gene flow has occurred between H. armigera and its sib-
ling taxon H. zea as a result of the secondary contact
after 1.5 My of allopatric separation, and the conse-
quences of this encounter are still unfolding [26, 27].
Previous research has established that hybridization be-
tween the two species was infrequent but possible under
laboratory conditions [15, 16, 28], and more recent stud-
ies have collected evidence for hybridization in the field
[8, 23, 25, 28]. However, the limitations of the genetic
markers and the particular range of samples collected re-
stricted interpretations within Brazil, which is the center
for H. armigera invasion of the Americas. No sterility or

sex-ratio distortion has been observed in any previous
study, but severe impairments in fitness are often re-
ported, which can impact the practical viability of hy-
brids in the field [15, 28]. Here, we used thousands of
genome-wide SNPs in tandem with secondary informa-
tion including mtDNA markers, host-plant information,
and morphological features to estimate hybridization be-
tween H. amigera and H. zea in different regions of
Brazil. Our data showed that the hybridization varied
significantly in the degree of introgression, depending on
the sample location, landscape composition, and climate
conditions.

We hypothesized that relatively few hybridization
event occur but involve introgression of large genomic
areas [8]. Our data supported this hypothses with rela-
tive agreement between the different markers (SNPs and
mitochondrial DNA), relatively small, but detectable
levels of hybridization, and the high degree of compati-
bility and synteny of the two genomes. Despite labora-
tory evidence of hybrids’ lack of fitness, continuous
backcrossing in natural population can increase the
compatibility of the introgressed material from the vari-
ous recombinant types (i.e, “hybrid swarm”) into the
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pure lines, creating an adaptive bridge between the two
species. Multiple hybridization events can enhance the
fitness performance of the two species involved, even
when the rate of hybridization is relatively limited [29].
Under these circumstances, hybridization allows adapta-
tion to new climatic and landscape conditions encoun-
tered by the invading species [30].

Hybridization can also have profound repercussions
for the native species, as demonstrated by the recent de-
tection of the CYP337B3v2 resistance gene in H. zea
[28]. This ubiquitous chimeric P450 gene confers pyr-
ethroid resistance on H. armigera in Brazil [31], and
now is present H. zea. This introgression provides com-
pelling evidence for the potential adaptive advantage of
hybridization, especially in agricultural systems. The im-
plications can extend beyond insecticide resistance and
affect other traits such as host range. For example, H.
zea has lost a significant number of detoxification genes
and gustatory receptors due to genetic drift, and might
be ‘re-acquiring’ some of the ‘lost’ genes from H. armi-
gera [26]. The scenario for hybridization in the Americas
may become increasingly complex as H. armigera
spreads and overlaps with another Helicoverpa pests in
Argentina (H. gelotopoeon) and with H. zea populations
from North America [25].

In relation to the viability of hybrids, the interaction
between genetic and environmental factors has shaped
and will continue to shape the distribution of genetic di-
versity, leading either to the development of H. amigera
ecotypes or to fusion into a single panmictic population.
However, in order to determine the evolutionary trajec-
tory of the two genetic groups, hybrid viability must be
determined. If hybrid viability proves to be limited, then
maintenance of the two species is the most likely sce-
nario. On the other hand, if hybrid fitness exceeds that
of the purebred lines, then the species are expected to
more closely resemble one another. Therefore, while hy-
brids may perform poorly in a laboratory setting, some

hybrids may have beneficial qualities that increase fitness
in a complex mosaic of agroecosystem. Our data indicate
that hybrids are present in natural populations; whether
or not the level of hybridization will increase or not
needs further investigation.

Genetic structure, founder event, and admixture

The three major features of the H. armigera invasion in
South America are the high mitochondrial haplotype di-
versity (i.e, haplotypes shared with Asia, Africa, and Eur-
ope), the genetic similarity among distant parts of recently
colonized areas, and the differences in regional dynamics
(i.e, host availability and host composition) [8, 32, 33].
Our data showed a high degree of differentiation among
some H. amigera sampling locations, which might suggest
some level of genetic structure. In addition, the higher
values of Fst among H. armigera populations can be ex-
plained by hybridization with H. zea, the presence of mul-
tiple H. armigera lineages, genetic drift (i.e., bottlenecks),
and differences in local dynamics (i.e., natural selection).
Many questions remain regarding how the various inva-
sion events occurred in Brazil, such as if the invasive spec-
imens originated from a pool of founders of mixed
ancestry or if the admixture occurred upon arrival. The
patterns of genetic substructure and intra-species
hybridization within H. armigera populations captured by
our data may suggest the presence of multiple H. armigera
lineages that are partially admixed. In contrast, the Fst
values for H. zea do not suggest a high degree of genetic
differentiation, supporting the evidence for panmixia, at
least within Brazil [25, 34, 35].

The genetic structure of H. armigera populations has al-
ways been a contentious topic of debate [36—38], where
the most evident signs of population structure were only
present at large geographical scales or when other lineages
were taken into account [8, 23]. Populations of H. armi-
gera seem to be experiencing extensive gene flow in other
parts of the world [12]. We can, therefore, expect that the
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genetic differences among populations in Brazil might de-
crease and stabilize over time. However, population gen-
etic structure caused by geographical regions or season
and crop variations have also been reported in different
ecological contexts, suggesting that H. armigera may not
reach a level of panmixia like H. zea [22, 38]. Continued
efforts are needed to monitor H. armigera’s population
structure, which will improve the predictions how resist-
ance might spread.

RAD-Seq for hybridization

Similar to other previous research using SNP data, we
have also detected a substantial rate of missing data
caused by the interruption of the recognition site of re-
striction enzymes [23]. The high proportion of missing
data may be evidence of a significant level of differenti-
ation between species and within populations. Large
amounts of missing data can create inconsistencies in
quantifying introgression in natural populations and in
estimates of genetic differentiation [23]. If critera are too
strict, SNP filtering will reduce the number of markers
and select only highly conserved regions of the genome.
In this case, biases in estimating the real introgression
can suggest no or reduced hybridization. Alternatively,
using a too-permissive filtering strategy may generate in-
consistency in hybridation estimates, especially when
multiple populations are compared, as the estimated di-
versity will mostly compare different regions of the gen-
ome. To overcome those difficulties, we included as
many markers as possible while reducing the threshold
for missing loci. While acknowledging that the RAD-seq
protocol is prone to these forms of biases when distant
groups are compared, the approach has reliably resolved
datasets with higher rates of missing data (i.e, up to
90%) [8, 39]. Nonetheless, more research using whole-
genome sequencing from insects collected in the field is
necessary to confirm the values of introgression pre-
sented here.

Environmental impact of climate and landscape on
hybridization

Rather than forming parallel clines where admixture can
be easily recognized, H. armigera and H. zea
hybridization instead formed a “mosaic hybrid zone”
where the patchy hybridization hotspots have no appar-
ent spatial pattern [40, 41]. A closer inspection indicates
that the hybrid zones are habitat-dependent and mostly
associated with maize and soybean production. In Brazil,
H. zea is predominantly associated with maize, whereas
H. armigera is often found on soybean and cotton. The
mosaic configuration of the agricultural landscapes and
the intensity of Brazilian farming (two to three crop sea-
sons in a year) facilitate the simultaneous production or
succession of suitable host types in the same area. Our
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study provided evidence that rotation among crops can
be particularly problematic and increase the probability
of hybridization. Furthermore, both species have resist-
ance to management practices: H. armigera is resistant
to commonly used pyrethroids and H. zea is resistant to
the CrylAc Bt-protein present in some transgenic soy-
bean. Therefore, we can expect to see the first signs of
insecticide or Bt resistance caused by introgressions and
host-changing behavior in areas with extensive produc-
tion of maize and soybean. In areas where these crops
do not coexist, hybridization levels are likely extremely
low, indicating that the appropriate choice of crops to
rotate and the use of polycultures are essential for pre-
venting and managing hybridization in Helicoverpa.

Conclusions

In summary, we have found strong evidence for
hybridization between H. armigera and H. zea in Brazil.
According to the different methods of inference,
hybridization between the two species ranged from 15 to
30% among Brazilian locations. No significant asym-
metry in hybridization between the two species was de-
tected, but the probability of hybridization and the
extent of the introgression were significantly affected by
the environmental conditions, including climate and
landscape composition. Insects from locations where
maize and soybean were present tended to show high
levels of hybridization. The most concerning finding is
the continuous exchange of adaptative genetic variation
that will likely affect the host range and insecticide re-
sistance. If hybridization continues and increases it will
likely complicate the management of these pests and
further threaten crop production in Brazil. Continuous
monitoring of the hybridization process is necessary be-
cause of the expansion of agricultural areas, climatic
changes, the composition of crop species and varieties,
and the planting seasons in South America. These con-
stantly changing factors could lead to sudden changes in
the rate of introgression between these Helicoverpa spe-
cies, and strongly impact on the host range and resist-
ance management.

Methods

Sample collection, DNA extraction, and species
identification

Larvae of both Helicoverpa species were collected from
13 different Brazilian locations by active searching on
host plants. The sampling included the most important
soybean, cotton, and maize-producing areas in Brazil
during the 2015 crop season. Detailed information about
the host plant, collection date, and geographic coordi-
nates is presented in Table 1. Upon collection, samples
were preserved in pure ethanol and stored at —80°C
until further manipulation.
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Table 1 Information about sampled locations of 13 collection locations of Helicoverpa spp. in Brazil for SNP markers sequencing.
Ngen refers to the number of insects successfully sequencing using SNP markers

Species Locations Host Code Date Latitude Longitude NGen
H. armigera S&o Desidério, BA Soybean, Cotton, Sorghum, Bean ABASD May 2015 12°26"27" S 45°26'47" W 34
H. armigera L. E. Magalhaes, BA Cotton ABALE June 2015 11°49"15" S 46°11'54"W 16
H. armigera ~ Campo Verde, MT Cotton AMTCV May 2015 15°23"41" S 55°11'02" W 08
H. armigera  Lucas do Rio Verde, MT ~ Soybean AMTLR November 2014 11°40'57" S~ 55°47'49"W 10
H. armigera  Sapeza, MT Cotton AMTSA May 2015 13°32'33" S 58°4849"W 11
H. armigera ~ Montividiu, GO Soybean AGOMO  January 2015 17°22'30" S 51°23"33"W 12
H. armigera  S.A. do Rio Verde, GO Soybean AGOSA February 2015 18°0137" S 47°2125"W 04
H. armigera  Londrina, PR Soybean APRLO February 2015 23°41'46" S 50°57'52"W 11
H. armigera  Viradouro, SP Soybean ASPVI January 2015 20°52'38" S 48°22'35" W 13
H. zea S&o Desidério, BA Maize Z/BASD May 2015 12°26"27" S 45°26'47" W 6
H. zea Rio Verde, GO Maize ZGORV February 2015 17°28'03" S 51°07'43" W 15
H. zea Palotina, PR Maize ZPRPA February 2015 24°2124" S 53°45'30" W 17
H. zea Piracicaba, SP Maize ZSPPI February 2015 22°41'50" S 47°38'34" W 15

Total DNA was extracted from each specimen follow-
ing an adapted protocol based on the CTAB method
[42]. After the DNA extraction, species identification
was confirmed through a PCR-RFLP method involving
the digestion of a mitochondrial fragment of the COI
mitochondrial gene (~511bp). The PCR reactions were
prepared using the COI-F02/R02 set of primers, and the
reaction product cut with the enzyme BstZ17I [43].

Genotyping by sequencing library preparation

A total of 172 samples of Helicoverpa species (53 H.
zea and 119 H. armigera) were selected to generate
two GBS libraries containing ~ 86 insects each [44].
Before the library-preparation step, the gDNA quality
and quantity were assessed in each sample by visual
inspection on agarose gel 1% (p/v), followed by deter-
mination of the concentration with a Qubit® 2.0
fluorometer (Life Technologies, Carlsbad, CA, USA).
We normalized DNA at 20 ng/pl and digested with a
single restriction enzyme, endonuclease (MSel). Last,
we used HiSeq 2500 to sequence the pair-end librar-
ies, which were prepared and sequenced at the Mo-
lecular & Cellular Imaging Center Genomics Facility
at the Ohio State University (Wooster, OH, USA).
Raw fasta files of Illumina sequences were included in
the SRA-NCBI repository (PRJINA615801).

Demultiplexing, SNP genotyping, and filtering strategy

Raw-sequence reads were demultiplexed using
process-radtags implemented in STACKS 2.2 [45, 46].
Reads were trimmed at 85bp after quality checking.
In the first steps of the analysis, the program rescued
RAD-tags from the reads, removed reads with un-
called bases, and then discarded reads with low-

quality scores (i.e, -r, —c, and -q). Several attempts
were made to map the GBS reads to the reference
genome (PRJNA378437); however, due to the low per-
centage of the alignment (< 15%), we decided to use
the non-reference-based method available in STACKS.
The de-novo approach to assemble loci has been ex-
tensively used in non-model system and when there
is no reference genome available; this strategy is also
more appropriate when the percentage of alignment
is low. We ran the de-novo pipeline using all default
parameters, closely following the method described by
Anderson et al. [23]. After running preliminary tests,
we concluded that the parameter combination used
by Anderson et al. [23] provided the optimal yield re-
garding the number of markers retained and cluster
resolution. Pair-end reads were integrated into a
single-end locus, organized by loci in tsv2bam and as-
sembled into contigs using gstacks. In the last step,
we generated statistical summaries and Treemix ana-
lysis using the population module, allowing a mini-
mum of 5% individuals required within groups and
100% between groups, excluding SNPs with less than
5% frequency, using one random SNP per RAD locus.
Due to the great divergence between groups and the
possibility of a high degree of variation within groups
caused by hybridization, filtering parameters were re-
laxed, allowing an overall 20% presence of SNPs (i.e.,
to be included, a certain SNP must be shared with
20% of all individuals independently of their location).
We conducted preliminary tests to maximize data re-
tention while minimizing the rates of missing data in
both species. The impact of hybridization varies in
different parts of the genome, as previous studies
have shown [47]. Thus, a different set of SNPs
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isolated from different genome regions can potentially
give different values of estimated introgression. Our
approach will help identify and limit potential biases
of the different imputation methods [48, 49].

Nuclear admixture, introgression, and population
structure

Species were identified using the collection information,
including the host plant, morphological characters, and
mtDNA genotyping, followed by the analysis with SNPs.
Bayesian clustering methods implemented in STRUCT
URE 2.3.4 and NewHybrids 1.1 were used to identify
putative hybrids and to estimate proportions of nu-
clear admixture and patterns of introgression [50-52].
For parameter settings, we set the admixture model
as the ancestry model and correlated frequencies as
allele-frequency models. The posterior probability (g),
representing the proportion of the genotypes originat-
ing from cluster categories (K), was later used to infer
the putative degree of introgression in each sample.
We used individual estimates of the introgression of
insects collected at different locations as a dependent
variable in models to explain possible causes of the
observed differences.

First, we assumed K = 2, because two gene pools could
potentially contribute to the genetic makeup of each
sample. However, because strong evidence supports a
history of multiple invasions of H. armigera [32], we also
explored levels of substructure to detect the coexistence
of different gene pools that may reflect the population
structure of H. armigera in Brazil. We ran the STRUCT
URE analysis for a range of K values (K=1-10), and
subsequently used the Evanno method implemented in
STRUCTURE HARVESTER 0.6.93 to test for the most
likely number of K [53]. We used only one SNP per
RAD locus (—-write-random-snp) to minimize the effect
of markers on linkage disequilibrium while performing
long runs of the program to ensure convergence. We set
the program to discard the first 150,000 steps (burn-in)
and recorded 250,000 steps in each replicate (# = 10). Rep-
licates of each K value were aligned and averaged in
CLUMPP 1.1.2 [54] and visualized in DISTRUCT 1.1 [55].

The number of clusters and the level of hybridization
were also investigated using non-model-based methods
such as Principal Components Analysis (PCA) with the
R package adegenet and ade4, as well as pairwise Fgr
analysis [56, 57]. Additionally, we explored the phylo-
genetic relationships of insects collected at different lo-
cations, taking into account possible migration events,
using the program Treemix [58]. Population divergence
and migration events were estimated using bootstraps to
calculate parameters in different scenarios by varying the
number of migration events (m = 1-6). The most likely
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number of migration events was determined based on
log-likelihood values and plotted residuals.

Association studies with landscape and climatic variables

Given that populations of the two species are now in
sympatry, interbreeding may occur at different rates,
possibly related to the presences of their main agricul-
tural hosts of soybean, cotton, and maize. To investigate
the ecological context of hybridization of H. armigera
and H. zea in Brazil, we considered two groups of envir-
onmental variables in our analysis: climatic and land-use
variables. For the climatic variables, we used elevation
and 19 locality-specific bioclimatic variables from the
WorldClim database, with a resolution of 30 arc-seconds
[59]. To account for the significant number of correlated
inputs, a principal component analysis (PCA) was car-
ried out to constrain the climatic variables, converting
many climatic variables into a smaller set of linear, un-
correlated values. The linear models used climatic vari-
ables from the sampling location, using the first two PC
coordinates, since they carry the most significant portion
of the variance, while the importance of climatic vari-
ables was assessed based on their contribution to the PC
axes.

Land-use (i.e. landscape) variables were obtained clas-
sifying agricultural-landscape components such as soy-
bean, maize, and cotton. Landscapes also contained
other crops such as sugarcane, tree plantations, and or-
ange orchards, as well as non-crop elements such as na-
tive forests, pastures, water, and urban sites that were
also included in the classification maps. We quantified
and characterized landscape attributes, using satellite
images with a maximum of 2 months of differences in
the collected data. This time window was necessary due
to image quality, cloudy weather, and the availability of
satellite images in public databases. Two databases were
used for the satellite image collections, the Instituto
Nacional de Pesquisas Espaciais (INPE) and the United
States Geological Survey — Earth Explorer (USGS/Earth
Explorer), which provide images from CBERS 4 and
LANDSAT 8, respectively.

We manipulated and classified the different attributes
from satellite images using ArcGIS 10.2.2. Briefly, a buf-
fer with a 25-km radius from the collection point was
created to delimit the study area. This radius was chosen
based on the relative size of regional agricultural areas,
in order to prevent overlap between landscapes, and also
based on the insect’s flight capacity (up to 1000 km)
[60]. Different signatures based on spectral responses
can be linked to landscape attributes such as maize, soy-
bean, and cotton, and therefore a supervised classifica-
tion wusing the maximum-likelihood classification
method was selected to separate classes within 25 km.
The resulting classification was carefully revised and
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manually curated to minimize classification errors, using
information from crop calendars and by contacting
growers in the respective areas. Similar to climate vari-
ables, we conducted PCA analyses of the standardized
proportion of each class, using only the first two PCAs
to generate the models.

We constructed linear mixed-effects models using the
Imer’ function in the R package Tme4’ to estimate the
relative importance of environmental factors for H.
armigera and H. zea hybridization in Brazilian croplands
[61]. The average introgression rates for each popula-
tion, estimated based on SNP data, were used as our re-
sponse variable. We inspected the residuals of each
variable for distortion in homoscedasticity, and normal-
ity by visually checking the diagnostic plot and the re-
sidual. The proportion of introgression was arcsine
square root-transformed to correct for normality. First,
we tested the effect of species (fixed effect = species),
controlling for the effect of populations (random effect =
populations) to assess the asymmetry in gene flow be-
tween the two species. Then, we used the first PCA co-
ordinates as independent variables in a full model for
the hybridization detected in H. armigera. We tested
the effect of landscape and climate, using these vari-
ables as fixed factors while controlling for the effect
of the population (random = populations). We checked
the significance of the models by evaluating x> and p-
values from the likelihood-ratio test of model com-
parisons. The most complex models included the
interaction between landscape and climate, followed
by models of isolated factors, and naive models.
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